
CS 343: Artificial Intelligence
SVMs, Kernels, Clustering

Profs. Peter Stone and Yuke Zhu — The University of Texas at Austin
[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

▪ Programming Project 5: Ghostbusters
▪ Due 4/21 at 11:59 pm.

▪ Homework 9: Neural Networks
▪ Due 4/26 at 11:59 pm.

▪ Project Capture the Flag (Optional)
▪ Qualifying Round: 4/28 at 11:59 pm.

▪ Programming Project 6: Classification
▪ To be released on Thursday
▪ Due 5/5 at 11:59 pm.

▪ AMA Office Hours (Prof. Zhu)
▪ Wednesday (4/21) 3-4pm

Linear Classifiers

▪ Inputs are feature values
▪ Each feature has a weight
▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1
▪ Negative, output -1 S

f1
f2
f3

w1

w2

w3
>0?

Learning: Binary Perceptron
▪ Start with weights = 0
▪ For each training instance:

▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!

▪ If wrong: adjust the weight vector

Learning: Binary Perceptron

▪ Start with weights = 0
▪ For each training instance:

▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!
▪ If wrong: adjust the weight vector by

adding or subtracting the feature
vector. Subtract if y* is -1.

Problems with the Perceptron

▪ Noise: if the data isn’t separable,
weights will thrash
▪ Averaging weight vectors over time can

help (averaged perceptron)

▪ Mediocre generalization: finds a
“barely” separating solution

▪ Overtraining: test / held-out
accuracy usually rises, then falls
▪ Overtraining is a kind of overfitting

Fixing the Perceptron

▪ Idea: adjust the weight update to mitigate these effects

▪ MIRA*: choose an update size that fixes the current mistake…
▪ … but, minimizes the change to w

▪ The +1 helps to generalize

* Margin Infused Relaxed Algorithm

Minimum Correcting Update

min not t=0, or would not have
made an error, so min will be
where equality holds

Maximum Step Size

▪ In practice, it’s also bad to make updates that are too large
▪ Example may be labeled incorrectly
▪ You may not have enough features
▪ Solution: cap the maximum possible value of t with some constant C

▪ Corresponds to an optimization that assumes non-separable data
▪ Usually converges faster than perceptron
▪ Usually better, especially on noisy data

Linear Separators

▪ Which of these linear separators is optimal?

Support Vector Machines

▪ Maximizing the margin: good according to intuition, theory, practice
▪ Only support vectors matter; other training examples are ignorable
▪ Support vector machines (SVMs) find the separator with max margin
▪ Basically, SVMs are MIRA where you optimize over all examples at once

MIRA

SVM

Non-Separable Data

Case-Based Learning

Case-Based Learning

hyperplane-based pattern recognition analogy-making human cognition
[Nie et al. Bongard-LOGO, NeurIPS’20]

A or B?

Case-Based Reasoning

▪ Classification from similarity
▪ Case-based reasoning
▪ Predict an instance’s label using similar instances

▪ Nearest-neighbor classification
▪ 1-NN: copy the label of the most similar data point
▪ K-NN: vote the k nearest neighbors (need a weighting

scheme)
▪ Key issue: how to define similarity
▪ Trade-offs: Small k gives relevant neighbors, Large k gives

smoother functions

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html

Parametric / Non-Parametric

▪ Parametric models:
▪ Fixed set of parameters
▪ More data means better settings

▪ Non-parametric models:
▪ Complexity of the classifier increases with data
▪ Better in the limit, often worse in the non-limit

▪ (K)NN is non-parametric Truth

2 Examples 10 Examples 100 Examples 10000 Examples

In-class Exercise

What would be the class assigned to this test instance for K=1, K=3, K=5, K=11?

Nearest-Neighbor Classification

▪ Nearest neighbor for digits:
▪ Take new image
▪ Compare to all training images
▪ Assign based on closest example

▪ Encoding: image is vector of intensities:

▪ What’s the similarity function?
▪ Dot product of two images vectors?

▪ Usually normalize vectors so ||x|| = 1
▪ min = 0 (when?), max = 1 (when?)

0

1

2

0

1

2

Basic Similarity

▪ Many similarities based on feature dot products:

▪ If features are just the pixels:

▪ Note: not all similarities are of this form

Invariant Metrics

▪ Better similarity functions use knowledge about vision
▪ Example: invariant metrics:

▪ Similarities are invariant under certain transformations
▪ Rotation, scaling, translation, stroke-thickness…
▪ E.g:

▪ 16 x 16 = 256 pixels; a point in 256-dim space
▪ These points have small similarity in R256 (why?)

▪ How can we incorporate such invariances into our similarities?

This and next few slides adapted from Xiao Hu, UIUC

Rotation Invariant Metrics

▪ Each example is now a curve in R256

▪ Rotation invariant similarity:

s’=max s(r(), r())

▪ E.g. highest similarity between images’
rotation lines

A Tale of Two Approaches…

▪ Nearest neighbor-like approaches
▪ Can use fancy similarity functions
▪ Don’t actually get to do explicit learning

▪ Perceptron-like approaches
▪ Explicit training to reduce empirical error
▪ Can’t use fancy similarity, only linear
▪ Or can they? Let’s find out!

Kernelization

Perceptron Weights

▪ What is the final value of a weight wy of a perceptron?
▪ Can it be any real vector?
▪ No! It’s built by adding up inputs.

▪ Can reconstruct weight vectors (the primal representation) from
update counts (the dual representation)

Dual Perceptron

▪ How to classify a new example x?

▪ If someone tells us the value of K for each pair of examples, never need to build the weight vectors
(or the feature vectors)!

Dual Perceptron

▪ Start with zero counts (alpha)
▪ Pick up training instances one by one
▪ Try to classify xn,

▪ If correct, no change!
▪ If wrong: lower count of wrong class (for this instance), raise

count of right class (for this instance)

Kernelized Perceptron

▪ If we had a black box (kernel) K that told us the dot product of two examples x and x’:
▪ Could work entirely with the dual representation
▪ No need to ever take dot products (“kernel trick”)

▪ Like nearest neighbor – work with black-box similarities
▪ Downside: slow if many examples get nonzero alpha

Kernelized Perceptron Structure

Kernels: Who Cares?

▪ So far: a very strange way of doing a very simple calculation

▪ “Kernel trick”: we can substitute any* similarity function in place of the dot
product

▪ Lets us learn new kinds of hypotheses

* Fine print: if your kernel doesn’t satisfy certain
technical requirements, lots of proofs break. E.g.
convergence, mistake bounds. In practice, illegal
kernels sometimes work (but not always).

Non-Linearity

Non-Linear Separators

▪ Data that is linearly separable works out great for linear decision rules:

▪ But what are we going to do if the dataset is just too hard?

▪ How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x

This and next few slides adapted from Ray Mooney, UT

Non-Linear Separators

▪ General idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:

Φ: x→ φ(x)

Some Kernels

▪ Kernels implicitly map original vectors to higher dimensional spaces, take the dot
product there, and hand the result back

▪ Linear kernel:

▪ Quadratic kernel:

▪ RBF: infinite dimensional representation

▪ Discrete kernels: e.g. string kernels

Why Kernels?

▪ Can’t you just add these features on your own (e.g. add all pairs of features
instead of using the quadratic kernel)?
▪ Yes, in principle, just compute them
▪ No need to modify any algorithms
▪ But, number of features can get large (or infinite)
▪ Some kernels not as usefully thought of in their expanded representation, e.g. RBF kernels

▪ Kernels let us compute with these features implicitly
▪ Example: implicit dot product in quadratic kernel takes much less space and time per dot

product
▪ Of course, there’s the cost for using the pure dual algorithms: you need to compute the

similarity to every training datum

In-Class Exercise: Kernels

Recap: Classification

▪ Classification systems:
▪ Supervised learning
▪ Make a prediction given evidence
▪ We’ve seen several methods for this
▪ Useful when you have labeled data

Clustering

▪ Clustering systems:
▪ Unsupervised learning
▪ Detect patterns in unlabeled data

▪ E.g. group emails or search results
▪ E.g. find categories of customers
▪ E.g. detect anomalous program executions

▪ Useful when don’t know what you’re
looking for

▪ Requires data, but no labels
▪ Often get gibberish

Clustering

▪ Basic idea: group together similar instances
▪ Example: 2D point patterns

▪ What could “similar” mean?
▪ One option: small (squared) Euclidean distance

K-Means

K-Means

▪ An iterative clustering algorithm
▪ Pick K random points as cluster

centers (means)
▪ Alternate:

▪ Assign data instances to closest
mean

▪ Assign each mean to the average of
its assigned points

▪ Stop when no points’ assignments
change

K-Means Example

K-Means as Optimization

▪ Consider the total distance to the means:

▪ Each iteration reduces phi

▪ Two stages each iteration:
▪ Update assignments: fix means c, change assignments a
▪ Update means: fix assignments a, change means c

points
assignments

means

Phase I: Update Assignments

▪ For each point, re-assign to
closest mean:

▪ Can only decrease total
distance phi!

Phase II: Update Means

▪ Move each mean to the average
of its assigned points:

▪ Also can only decrease total
distance… (Why?)

▪ Fun fact: the point y with
minimum squared Euclidean
distance to a set of points {x} is
their mean

Initialization

▪ K-means is non-deterministic
▪ Requires initial means
▪ It does matter what you pick!
▪ What can go wrong?

▪ Various schemes for preventing this
kind of thing: variance-based split /
merge, initialization heuristics

K-Means Getting Stuck

▪ A local optimum:

Why doesn’t this work out like the
earlier example, with the purple
taking over half the blue?

K-Means Questions

▪ Will K-means converge?
▪ To a global optimum?

▪ Will it always find the true patterns in the data?
▪ If the patterns are very very clear?

▪ Will it find something interesting?

▪ Do people ever use it?

▪ How many clusters to pick?

Agglomerative Clustering

Agglomerative Clustering

▪ Agglomerative clustering:
▪ First merge very similar instances
▪ Incrementally build larger clusters out of

smaller clusters

▪ Algorithm:
▪ Maintain a set of clusters
▪ Initially, each instance in its own cluster
▪ Repeat:

▪ Pick the two closest clusters
▪ Merge them into a new cluster
▪ Stop when there’s only one cluster left

▪ Produces not one clustering, but a family of
clusterings represented by a dendrogram

Agglomerative Clustering

▪ How should we define “closest” for clusters with
multiple elements?

▪ Many options
▪ Closest pair (single-link clustering)
▪ Farthest pair (complete-link clustering)
▪ Average of all pairs
▪ Ward’s method (min variance, like k-means)

▪ Different choices create different clustering
behaviors

Example: Google News

56

Top-level categories:
supervised classification

Story groupings:
unsupervised clustering

