,_ CS 343: Artificial Intelligence

| g g é Deep Learning
_ o

Profs. Peter Stone and Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Good morning colleagues!

Past due:
" HW1-7: Search, CSPs, Games, MDP, RL, Bayes Nets, Particle Filters/VPI
" 11 reading responses: Al100 report; 10 Textbook readings
" PO,1,2,3: tutorial, Search, Multiagent RL
" Midterm
Upcoming EdX Homeworks
" HWS8: Naive Bayes and Perceptrons - due Monday 4/19 at 11:59 pm
" HWZ9: Neural Networks - due Monday 4/26 at 11:59 pm
Upcoming programming projects
" P4: Bayes Nets - due Wednesday 4/14 at 11:59pm
" P5: Particle Filters - due Wednesday 4/21 at 11:59pm
" Contest (Capture the flag): Qualification due 4/28; Finals 5/3 (extra credit)
Readings: SVMs, Kernels, and Clustering - Due Monday 4/19 at 9:30am

Good morning colleagues!

" Midterm grades

" Some context:
* Deep learning = neural networks
* Al <> Deep Learning
* But...it’s definitely an important area to know about these days

* Applications other than vision and natural language processing?
* Robotics
* Fraud detection
* Game playing (e.g. go, Starcraft)
* Election predictions

Perceptron

Two-Layer Perceptron Network

N-Layer Perceptron Network

N-Layer Neural Network

;

Some of Your Questions

What's the relationship between a weight and a gradient?
* How does gradient ascent work?
* [Policy Grad RL slides]
* [Gradient ascent problem]
* Can gradient ascent be changed to find a global maximum? (Michael Labarca)
What's the purpose of the activation function?
What exactly is backpropagation?
* [Gradient computation problem]
Are there other ways to train NNs? (Tyler Miller)
* NEAT

Test Your Understanding

" Data sufficiency problem

" Practice problem in breakout rooms
" Talk about each subproblem individually

Some of Your Questions

" What's the purpose of the activation function?
" Why are leaky RELU units better than sigmoids or tanh? (Cyrus Mahdavi)
" [Representation capacity problem]

What Can be Done with
Non-Linear (e.g., Threshold) Units?

1 layer of
trainable Q

weights
O O

separating hyperplane

21 f
traeilggll;sleo Q Q @ Q
weights |

O O O

convex polygon region

3 layers of
trainable Q Q Q Q
weights |

Q Q composition of polygons:
non convex regions

Leaky RelLU
max(0.1x, X)

Activation Functions

Sigmoid i
v
olz)=1/(14+e %) _ _://2 IIIIIIIIIIIIIIIIIIII
o -
1 Maxout max(wlz+ by, w]z + b,)
tanh tanh X _U'I_ 4 1 i e
() _““‘*j ELU fie) = {a(exp(m)—l) iixfgg

ReLU max(0x) -/ | [=1

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

Some of Your Questions

" What are hyperparameters and how do you tune them?
* Activation units

Learning rate

Momentum parameter

Dropout parameters

Normalization scheme

Number of layers and units (architecture)

" How do you design architectures?
* Neural architecture search [NEAT+Q slides]
* Can hyperparameters be made learned parameters? (Conrad Li)
* What's the difference between adding layers vs. widening a layer? (Michael Labarca)
* Does batch normalization correct for bad initialization? (Yuhan Zheng)

Some of Your Questions

" Differences between brain’s NN and artificial NNs design? (Pranooha Veeramachaneni)
* Are NNs designed based on intuition from brain structures? (Rudraksh Garg)

" What are the limitations of NNs? (Jack Si)
* How far can we go with deeper and larger networks? (Trong LvV)

" When shouldn’t you use NNs? (Ethan Houston)

Some of Your Questions

" Computation requirements of NNs vs. traditional vision classification (Vijay Vuyyuru)
* Training vs. testing
* Depends on hardware
* Why does deep learning work so much better on GPUs? (Cameron Doggett)
" Why manual features favored in past, and only recently NNs favored? (Nalin Mahajan)

" If image recognition is so good, why do some websites still require you to identify
Images to check if you're a robot? (Jessica Ma)

Some of Your Questions

" Are there good ways of introducing human knowledge into NNs? Or is that missing the
point? (Tyler Miller)
* Neurosymbolic systems

Review: Linear Classifiers

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

f(x

free

=

~
PIXEL-7,12

j>‘ PIXEL-7,13
NUM_LOOPS

=

YOUR_NAME :
MISSPELLED :
FROM_FRIEND :

(BN

SPAM
or

a:zn

Some (Simplified) Biology

" Very loose inspiration: human neurons

Cell body or Soma

Linear Classifiers

Inputs are feature values
Each feature has a weight
Sum is the activation

activationy(z) =) w; - fi(z) =w- f(x)

If the activation is:
" Positive, output +1

12

>(0?

Non-Linearity

Non-Linear Separators

" Data that is linearly separable works out great for linear decision rules:

oo

" But what are we going to do if the dataset is just too hard?

This and next slide adapted from Ray Mooney, UT

Non-Linear Separators

" General idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:

[] o, o o
®
® “
g ®
o ¢ © "
] ® g o
.
.
3
- ® ® g
e . .

Computer Vision

Object Detection

Manual Feature Design

Features and Generalization

.
~
!
i
f .
4 1
!
[
i
&
_#

FI AT

[Dalal and Triggs, 2005]

Features and Generalization

b
A
1
4
¥
1
-
;
e

Manual Feature Design — Deep Learning

" Manual feature design requires:
" Domain-specific expertise

i} " Domain-specific effort

/?‘*A " What if we could learn the features, too?

SN SN\ (e
) |
|

e

Perceptron

Two-Layer Perceptron Network

N-Layer Perceptron Network

Performance

ImageNet Error Rate 2010-2014

Traditional CV

T9%

60%
=
[35]
va

< 405
uj

20%

%

2010 2011 2012 2013 2014

graph credit Matt
Zeller. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV

T9%

60%
=
[35]
va

< 405
uj

20%

%

2010 2011 2012 2013 2014

graph credit Matt
Zeller. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV & Deep Leaming

T9%
60%
=
2]
o
< 405
wj
20%
AlexNet
%
2010 2011 2012 2013 2014

graph credit Matt
Zeller. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leaming

T9%
6%
=
[35]
v
< 405
uj
AlexNet ! E
ﬁ =
2010 2011 2012 2013 2014

graph credit Matt
Zeller. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leaming

T9%
6%
=
[35]
v
< 405
uj
AlexNet ! E
ﬁ =
2010 2011 2012 2013 2014

graph credit Matt
Zeller. Clarifai

Speech Recognition

TIMIT Speech Recognition

® Traditional ® Deep Learning

1998 2000 2002 2004 2006 2008 2010 2012 2014 graph credit Matt Zeiler, Clarifai

N-Layer Perceptron Network

Local Search

" Simple, general idea:
" Start wherever
" Repeat: move to the best neighboring state
" If no neighbors better than current, quit
" Neighbors = small perturbations of w

" Properties
" Plateaus and local optima

How to escape plateaus and find a good local optimum?
How to deal with very large parameter vectors? E.g., = Rlbillz‘on

Perceptron

W
f2 2 > 2 > >O? —p-

" Objective: Classification Accuracy

m

[*“(w) = %Z (Sign(wa(a:(":))) —— y(i))

1=1

" |ssue: many plateaus —, how to measure incremental progress toward a correct label?

Soft-Max

" Score fory=1: w' feore for y=-1: —w' f(x)
" Probability of label: (= 1 f(z)w) =
PN) _€wa(x) _I_ e—wa(aZ)
e—wa(x)

ply = -Lf@)w) = o=@

" Objective: l(w) = Hlp(y =y f(z); w)

" Log:)= Z; log p(y = 4| (z"); w)

Two-Layer Neural Network

D mg— TN
V \
: x” S =l " :
G

N-Layer Neural Network

;

Our Status

" Our objective [[(w)
® Changes smoothly with changes in w
" Doesn’t suffer from the same plateaus as the perceptron network

® Challenge: how to find a good w ?

max [[(w)
" Equivalently: min _ll(w)

w

1-d optimization

= Could evaluate 9(Waid?) g(wo — h)

" Then step in best direction

" Or, evaluate derivative: 99(wo) _ lim g(wo +h) — g(wo — h)
ow h—0 2h

" Tells which direction to step in

2-D Optimization

Source: Thomas Jungblut's Blog

Steepest Descent

" |dea:
" Start somewhere
" Repeat: Take a step in the steepest descent direction

-6 = T -2 0 2 4 6 Figure source: Mathworks

What is the Steepest Descent Direction?

What is the Steepest Descent Direction?

" Steepest Direction = direction of the gradient

- 9g "

Optimization Procedure 1: Gradient Descent

"Init: W
"Fori=1,2,...

w < w—a*x Vg(w)

" (: learning rate --- tweaking parameter that needs to be
chosen carefully

" How? Try multiple choices
" Crude rule of thumb: update changes 1w about0.1-1%

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with Gradient Descent?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with Gradient Descent?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with Gradient Descent? very slow
progress along flat direction, jitter along steep one

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

Optimization Procedure 2: Momentum

" Gradient Descent

" Momentum

"Init: w
"Fori=1,2,...

w <+ w—ax*x Vg(w)

“Init: W

"Fori=1,2,..
v puxv—ax Vg(w)
W< W+ v

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with Momentum?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

How do we actually compute gradient w.r.t. weights?

Backpropagation!

Backpropagation Learning

15-486/782: Artificial Neural Networks
David S. Touretzky

Fall 2006

LMS / Widrow-Hoff Rule

Works fine for a single layer of trainable weights.

What about multi-layer networks?

Sl

pd

With Linear Units, Multiple Layers
Don't Add Anything

O O

T U: 2X3 matrix

Q Q O y = Ux(VXx) = (UxV)x

3X4 matrix

QQQO

Linear operators are closed under composition.
Equivalent to a single layer of weights W=UXV

But with non-linear units, extra layers add
computational power.

What Can be Done with
Non-Linear (e.g., Threshold) Units?

1 layer of
trainable Q

weights
O O

separating hyperplane

21 f
traeilggll;sleo Q Q @ Q
weights |

O O O

convex polygon region

3 layers of
trainable Q Q Q Q
weights |

Q Q composition of polygons:
non convex regions

How Do We Train A
Multi-Layer Network?

Error = d-y

y
A
»
Q Error = ???
Q QO

Can't use perceptron training algorithm because
we don't know the 'correct' outputs for hidden units.

How Do We Train A
Multi-Layer Network?

_l pP__ {,P\2
E =52 (d-y)

y

A
Define sum-squared error: Q
*’ ON®

@

Use gradient descent error minimization: O Q
OFE
Aw. = —
v 1 oW,

)

Works if the nonlinear transfer function is differentiable.

Deriving the LMS or “Delta” Rule
As Gradient Descent Learning

y = szXf

1 2
E = =) (d’—y" dE
zg(y) 9E _ya
y
y
A 0E _ dE 0y = (y—d)x.
Q ow, dy ow, ‘
41>
Wi OE
X, Aw; = N —n(y—d)x;

1

How do we extend this to two layers?

Switch to Smooth Nonlinear Units

netj = Zwijyi
1

y; = d(net;) g must be differentiable

Common choices for g: EEEEREREP
1 05¢ |

g(X) = — —/
1+e |

9'(x) = g(x)(1-g(x) TEE T

g(x)=tanh(x) _
g'(x)=1/cosh?(x) (A

Gradient Descent with Nonlinear Units

'

X, > >

y=g(net)=tanh(zi: wixl.)

dE dy 2 onet
—=(y—-d), =1 h , = X,
Ty (y—d) T net /cosh”(net) ow, X,
0E _ dE dy oJnet
ow, dy dnet ow,

(y—d)/coshz(z wfxi)-xi

11

Now We Can Use The Chain Rule

A a—yk = (Vx—dy)
k
oE
@I k= onet, = (yx—dy)-g'(net,)
w OE OE anetk

oE oJnet,

ay; onet, 0Yy;
Wi - dE . Eg'(net)
. onet; 0y, .

T2

Weight Updates

oE OFE .anetk —
OW j onet, 0w, k'Y
0E _ OFE onet; _

. = 0.'V.
oW, onet; ow; iV

13

Deep learning Is everywhere

Classification Retrieval

amphibian
fireboat
drilling platform

agaric sq

grille mushroom spider monkey
pickup jelly fungus elderberry titi

beach wagon gill fungus rdshire bullterrier indri
fire engine | dead-man's-fingers Iﬂ'n currant howler monkey

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

Deep learning Is everywhere

Segmentation

Ko b . 5md1€5"dmﬁi: i o R
it g | L 4 .1 ; : {ﬂi.) ¥
ilding 3 \-:'.'I : H ._ N ew ||:,

[Faster R-CNN: Ren, He, Girshick, Sun 2015] [Farabet et al., 2012]

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

Deep learning Is everywhere

Ji = CAUTIONARY ORIECT
B = sTaTionsAY DBJECT

03 - o o NVIDIA Tegra X1

= TAMIAL OBECT

self-driving cars

Lecture 6 - 25 Jan 2016

Fei-Fel Li & Andrej Karpathy & Justin Johnson

[Mnih 2013]

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

Deep learning Is everywhere

[Ciresan et al. 2013] [Sermanet et al. 2011]
[Ciresan et al.]

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

motorcycle on a dirt road.

Captioning

A group of young people Two hockey players are fighting 4 jittle girl in a pink hat is
playing a game of frisbee. over the puck. blowing bubbles.

A refrigerator filled with lots of
food and drinks.

A herd of elephants walking A close up of a cat laying A red motorcycle parked on the A yellow school bus parked in [Vinyals et al., 2015]
across a dry grass field. on a couch. side of the road. a parking lot.

reddit.com/r/deepdream

Lecture 6 - 25 Jan 2016

Fei-Fel Li & Andrej Karpathy & Justin Johnson

Remaining Pieces

" Optimizing machine learning " Initialization and batch
objectives: normalization
" Stochastic Descent
" Mini-batches " Computing the gradient Vg(w)
" Backprop

" Improving generalization
" Drop-out

" Gradient checking

" Activation functions

Mini-batches and Stochastic Gradient Descent

" Typical objective:
I (w Zlogpy—y”\f(W);w)

= average log- |Ike|lh00d of label given input

k
1 o
~) logp(y =y |f (@) w)

i=1
= estimate based on mini-batch 1...k

| Mini-batch gradient descent: compute gradient on mini-batch (+ cycle
over mini-batches: 1..k, k+1...2k, ... ; make sure to randomize

permutation of data!)
| Stochastic gradient descent: k = 1

Remaining Pieces

" Optimizing machine learning " Initialization and batch
objectives: normalization
" Stochastic Descent
" Mini-batches " Computing the gradient Vg(w)

: . " Gradient checking
" Improving generalization

" Drop-out

" Backprop

" Activation functions

Regularization: Dropout

9
~

A\ XY LA\ X XL
[RS

BRSNS
R

Y/

,_ BRI KRS
@ ﬁ“@ﬁ e
ANV

[Srivastava et al., 2014]

(b) After applying dropout.

a) Standard Neural Net

ha

(

89

Waaaalit a second...
How could this possibly be a good idea?

91

Waaaalit a second...
How could this possibly be a good idea?

Forces the network to have a redundant representation.

has an ear X

has a tail

is furry X cat
score

has claws

mischievous X

look

92

Waaaalit a second...
How could this possibly be a good idea?

Another interpretation:

Dropout Is training a large ensemble
of models (that share parameters).

Each binary mask is one model, gets
trained on only ~one datapoint.

93

At test time....

Ideally:
want to integrate out all the noise

Sampling-based approximation:
do many forward passes with
different dropout masks, average all
predictions

94

At test time....
Al I O O U \\WILI C ai1e 10orvward od F{ADproximattelv

Leave all input neurons turned on (no dropout).

Q: Suppose that with all inputs present at
test time the output of this neuron Is Xx.

What would its output be during training
time, In expectation? (e.qg. if p = 0.5)

96

At test time....
All Il Io JO U WILIN c 1gie 10r'ward pPc Fapproxtimnalety
Leave all input neurons turned on (no dropout).

during test: a = w0*x + wl*y

® during train:
E[a] = ¥ * (WO*0 + w1*0
wO0*0 + wl*y
wo wi wO*x + wl1*0

wO*X + wl*y)
= * (2 wO0*X + 2 wl*y)
=% * (W0*Xx + wl*y)

97

At test time....
All Il Io JO U WILIN c 1gie 10r'ward pPc Fapproxtimnalety
Leave all input neurons turned on (no dropout).

during test: a = wO*X + wl*y Withp=05, using all inputs

3 i i In the forward pass would
durlng train: inflate the activations by 2x
from what the network was
— 1/, * * *
E[a] = (WO 0 +wl*0 “used to” during training!
WO*O + Wl*y => Have to compensate by
scaling the activations back
wo wi WO*X + W1*0wn by v
* *
) y wO*X + wl*y)

=Y * (2 wO*X +2 wl*ry)
=% * (W0*x + wl*y)

98

Remaining Pieces

" Optimizing machine learning " Initialization and batch
objectives: normalization
" Stochastic Descent
" Mini-batches " Computing the gradient Vg(w)

: . " Gradient checking
" Improving generalization

" Drop-out

" Backprop

" Activation functions

Leaky RelLU
max(0.1x, X)

Activation Functions

Sigmoid i
v
olz)=1/(14+e %) _ _://2 IIIIIIIIIIIIIIIIIIII
o -
1 Maxout max(wlz+ by, w]z + b,)
tanh tanh X _U'I_ 4 1 i e
() _““‘*j ELU fie) = {a(exp(m)—l) iixfgg

ReLU max(0x) -/ | [=1

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

Remaining Pieces

" Optimizing machine learning " Initialization and batch
objectives: normalization
" Stochastic Descent
" Mini-batches " Computing the gradient Vg(w)

: . " Gradient checking
" Improving generalization

" Drop-out

" Backprop

" Activation functions

- Q: what happens when W=0 init is used?

output layer
input layer
hidden layer

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

- First idea: Small random numbers
(gaussian with zero mean and le-2 standard deviation)

W= 0.01* np.random.randn(D,H)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

- First idea: Small random numbers
(gaussian with zero mean and le-2 standard deviation)

W= 0.01* np.random.randn(D,H)

Works ~okay for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

assume some unit gaussian 16-D input data
D = np.random.randn(1066, 500)
hidden layer sizes = [580]*10

LetS IOO k at nonlinearities = ['tanh']*len{hidden layer sizes)

act = {'relu’':lambda x:np.maximum(@,x), 'tanh':lambda x:np.tanh(x)}

Hs = {}

m for i in xrange(len(hidden layer sizes)):

SO e X=D if i == 0 else Hs[i-1] # input at this layer
fan_in = X.shape[1]
fan out = hidden layer sizes[i]

u]
actlvatlon W = np.random.randn(fan_in, fan out) * 0.81 # layer initialization
p.dot(X, W) # matrix multiply
tatistics

=n
= act[nonlinearities[i]] (H) # nonlinearity
s[i] = H # cache result on this layer
look at distributions at each layer
print 'input layer had mean %f and std %f' % (np.mean(D}, np.std(D))
layer means = [np.mean{H) for i,H in Hs.iteritems()]
layer stds = [np.std(H) for i,H in Hs.iteritems(}]
for i,H in Hs.iteritems():
print 'hidden layer %d had mean %f and std %f' % (i+l, layer means[i], layer stds[i])

E g 10_|ayer net with 500 # plot the means and standard deviations
T plt.figure()

neurons on each layer, using | plt.subplot(121)

. . plt.plot(Hs.keys(), layer means, 'ob-')
tanh non-linearities, and plt.title('layer mean')
e e ge . . . plt.subplot(122)
initializing as described in last | pit.plot(ks.keys(), layer stds, "or-*)
Slide plt.title('layer std")

plot the raw distributions

plt.figure()

for i,H in Hs.iteritems():
plt.subplot(1l,len(Hs),i+1)
plt.hist(H.ravel(), 30, range=(-1,1))

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

input layer had mean ©.808927 and std ©.998388

hidden layer 1 had mean -8.000117 and std ©.213881
hidden layer 2 had mean -0.000001 and std ©.847551
hidden layer 3 had mean -0.000002 and std 0.010638
hidden layer 4 had mean 0.000001 and std 0.082378
hidden layer 5 had mean 0.0000082 and std 0.8088532
hidden layer & had mean -0.000000 and std ©.8680119
hidden layer 7 had mean 0.000080 and std 0.080026
hidden layer & had mean -0.000000 and std ©.000006
hidden layer 9 had mean 0.000080 and std 0.080801
hidden layer 10 had mean -©.008000 and std ©.000006

i layer mean 48 layer std

00000 » g * * -
-0,00002 /

006 I."I i

J 05 -

0010 |

.
-0.0001z 1 2 g 3 g il 1 2 3 4 5 7 B
0000 255000 2500 53400 2 5900 2400 293400 03 34500
0000 250000 250400 250900 250400 25000 25000 230000 250900
S0000 200000 200400 200400 200 il L 200400 2000 200400
30000 150400 150400 150400 150400 150000 150000 150402 153000
20000 100g0s 100400 100400 100800 100000 102400 10040 103400
{lefen] =0400 L o) SO0 00 k00 0 00 B0] 20400

E’. '::l:3]j—:l:—"JE:'.l:5]3—‘:13—':'523 65 !3—‘:1:—'2'523 :5!'.1—;13—1.'-5:'.‘- :‘.-’.'.l—:‘_C—L'-Eu-: G5 ‘J—;‘_C—USC-“ ¢5 10-1.0-05 00 05 l*‘—::LL—uE»C- 05 1

Fei-Fel Li & Andrej Karpathy & Justin Johnson

Lecture 5 -

20 Jan 2016

input layer had mean ©.808927 and std ©.998388

hidden layer 1 had mean -8.000117 and std ©.213881
hidden layer 2 had mean -0.000001 and std ©.847551
hidden layer 3 had mean -0.000002 and std 0.010638
hidden layer 4 had mean 0.000001 and std 0.082378
hidden layer 5 had mean 0.0000082 and std 0.8088532
hidden layer & had mean -0.000000 and std ©.8680119
hidden layer 7 had mean 0.000080 and std 0.080026
hidden layer & had mean -0.000000 and std ©.000006
hidden layer 9 had mean 0.000080 and std 0.080801
hidden layer 10 had mean -©.008000 and std ©.000006

i layer mean 48 layer std

00000 » g * * -
-0.00002 /

006 I."I i

J 05 -

0010 |

. .
-0.0001z 1 2 g 3 g = 1 2 3 4 5 7 B
0000 255000 2500 53400 2 5900 2400 293400 03 34500
0000 250000 250400 250900 250400 25000 25000 230000 250900
S0000 200000 200400 200400 200 il L 200400 2000 200400
30000 150400 150400 150400 150400 150000 150000 150402 153000
20000 100g0s 100400 100400 100800 100000 102400 10040 103400
{lefen] =0400 SOg0d SO0 00 k00 0 00 B0] 20400

a 25]JE12—'Z'ECJ 65 !3—‘:1:—'2'523 :5!'.1—;13—1.'-8:" o5 EJElc—E-E ‘J—;‘_C—USC-“ ¢5 10-1.0-05 00 05 l“‘—::LL—LISC- 05 1

e

5 00 05 10-1.0-05 0

Fei-Fel Li & Andrej Karpathy & Justin Johnson

Lecture 5 -

All activations
become zero!

Q: What do the
gradients look like?

20 Jan 2016

W =_n|:-.randﬂm.raﬁdnifaﬁ_in, faﬁ_ﬂut] * 1.0 # layer initialization

input layer had mean ©.001808 and std 1.001311

hidden layer 1 had mean -0.000430 and std ©.981879
hidden layer 2 had mean -0.0008849 and std ©.981649
hidden layer 3 had mean 0.000566 and std ©.981601
hidden layer 4 had mean ©.008483 and std ©.981755 .
hidden layer 5 had mean -08.000682 and std ©.981614 *10 InStead Of *001
hidden layer 6 had mean -0.008481 and std ©.981568
hidden layer 7 had mean -0.000237 and std ©.981528
hidden layer 8 had mean -0.000448 and std ©.981913
hidden layer 9 had mean -0.088899 and std ©.981728
hidden layer 18 had mean 0.088584 and std ©.981736
00005 . ayer medn 0000es FEELSE-1 K layer std
0604 i . B.0004 \ '
0002 / \ 000035 oy
I':, 000030
0.0800 { 4
| , 0.00025 . \
002 f f -
_’,,a-"'.‘x 000020
204 . 3 b
/ b f 0.00¢ .
™, ! ! bY
e Vv \\ 200010 v -
~0.0008 \ \\‘; £.0000 =
..... . ~4
- ; 1 2 a 5 6 B % s 1 F 5 [3 B
230000 ag coil og S0 0o 250 SR00 i 4]
200000 20000 200Q00 20000 200[(e Si 200000 aogan J00R0 X 0
150000 150Q00 150Q00 150400 15000 0o 15040 15000 1 a 15000
100000 10000 100g00 100 gas 1G0R0D Ul] 100R0 10000 1 a 10000
S000Q EN@D0 = ula] L] [l 2 fei] 000 SORCD i Tei] SOR00
-Cl: 2 00 05 13—:: =0 0 o3]J-;lC-L'-‘_-‘. o5 l':—:' =05 00 2 0-10-03 00 03 1-33:.:—-3513 05 10-1.0-05 040 3 l-J—C:...-.‘.-..J > 10=10-05 00 03]-'JEJ. =0 2 05

Fel-Fel L

| & Andrej Karpathy & Justin Johnson

Lecture 5 -

Almost all neurons
completely
saturated, either -1
and 1. Gradients
will be all zero.

20 Jan 2016

i 1 had . d std 1. = = — : o e
e e i e B oaiias bod i 8 a W = np.random.randn(fan in, fan out) / np.sqrt(fan in) # layer initialization

hidden layer 1 had mean ©.001198 and std 0.627953
hidden layer 2 had mean -0.888175 and std ©.486051
hidden layer 3 had mean 0.0880855 and std ©.487723 “ . . . ”
hidden layer 4 had mean -0.000306 and std ©.357108 Xavier initialization
hidden layer 5 had mean 0.0008142 and std ©.3208917
hidden layer 6 had mean -0.000389 and std ©.292116 [Glorot et aI., 2010]
hidden layer 7 had mean -0.080228 and std ©.273387
hidden layer 8 had mean -8.880291 and std ©.254935
hidden layer 9 had mean 0.0088361 and std ©.239266
hidden layer 16 had mean ©.000139 and std ©.228008
bobis layer mean g layer std
F
sooia |} so| g
Reasonable initialization.
i (Mathematical derivation assumes
" linear activations)
00002 2 / B " g
00000 /.»".\\ /‘f ‘-\-\ -
\-\\ Fd 30
a2 ’ 2 \\ \l\\. ; '] J & -
\‘-"r \-,‘1 - o ."’ 2 L
-0.0004 ! ‘:- 20

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

input layer had mean ©.000501 and std ©.999444

W

= np.random.randn(fan in, fan out) / np.sqrt(fan in) # layer initialization

hidden layer 1 had mean ©.398623 and std ©.582273
hidden layer 2 had mean ©.272352 and std ©.403795
hidden layer 3 had mean 08.186076 and std 0.276912
hidden layer 4 had mean 0.136442 and std ©.198685 .
hidden layer 5 had mean ©.099568 and std ©.140299 b t h th R Ll |
hidden layer & had mean 0.072234 and std ©.1683280 u W en USI ng e e
hidden layer 7 had mean ©.049775 and std ©.872748
hidden layer 8 had mean ©.035138 and std 0.851572 = = =
hidden layer 9 had mean 0.0625404 and std ©.038383 nonlinearitv it breaks
hidden layer 10 had mean 0.018408 and std ©0.026076 "
i layer mean layer std
L
35 _
L
0.30 \\\ ke
5 h\ "‘.
W,
020 \
~
0.15 ‘H‘“"a] L
10 e =
. e
0.05 — _
——— 8l e - =
000 5 1 2 3 5 & 7 g S 3 5 T 8 %
300000 oQ SO0 00 SR00 00 =500 00 o U S0
saado i 350000 odos A0H0G
250000 0o 250600 - - e s0do aoodon
300400 nodat e
00 25040
200000 0o 200800 300400
250000 500 1 o e
203400 00 s5adon i s
150000 150008 150400 200000 00400
150000 150 200400 . = -« [l
adae 150q00 I b i
100000 10500 100400 150400
100009 100 i it
e i = [i & R w030 1o0dan
e i sx00 squa 00 50400 I
:‘..3 510152 JL-":\?C;V'.IG':'.J]':_’-J_’E_’ JEC:EIGL‘.-E'.!EE\:"JEJC':‘.'.!]‘.\}-'J!':\! 3%3:51'31':_’3253-]%3: ':13'.-33LI.":\.'BE'JZE-]'JI':\._JC_"_-_"J;..JC 510)52 33':.*'3%'335131':_"3!':-5 'J;'..3C=.~1'31'>_" 02530

Fei-Fel Li & Andrej Karpathy & Justin Johnson

Lecture 5 - 20 Jan 2016

input layer had mean ©.008581 and std ©.999444

“np.random.randn(fan in, fan out) / np.sqrt{fan in/2) # layer initialization

hidden layer 1 had mean 0.562488 and std ©.825232
hidden layer 2 had mean ©.553614 and std ©.827835
hidden layer 3 had mean 0.545867 and std ©.813855
hidden layer 4 had mean 0.565396 and std ©.826902
hidden layer 5 had mean 0.547678 and std ©.834092
hidden layer 6 had mean 0.587183 and std ©.860035 e e a .
hidden layer 7 had mean 0.596867 and std 8.870618]
hidden layer 8 had mean 0.623214 and std ©.889348 -
hidden layer 9 had mean ©.567498 and std 0.845357 note add Itlonal /2
hidden layer 10 had mean ©.552531 and std ©.844523

- layer mean _— layer std .

&2 ﬂ 088 ,//

;

R b 057 s

&0 ._’.a/ 3 il o

053 e \

r 085 / |
0.58 Fs % / \
057 I Gas Vi
i s - =
056~ f \\\ '3’_,..-4\ o
0ss e / 082 ™
e '\.‘f
5 1 y] F] 5 3 8] oL 1 2] B 3 7 e E

300000 2000) HSo 00 = 205500 2h0 oD —— wtataly of

250000 250100 25080 EEL il 25040 250400 25000 250400 2500008 250400

200000 20ados 200400 aagon 200 200400 podos 200400 i i 200408

150000 153000 150000 150000 150 150000 150300 150000 150000 150400

100000 133000 1o0gan 103000 100 Jgog 100000 100000 13000 lo0g00

50004] 0400 0400 S0 00 0400 00 s0400

::::.' 51015202530 ;v':l: 5101520253 :l;'. G051015202 55'3:5 005101520253 3%'3: 31015202 BE'JCC 00510152 3.’5!':%-3: 51015203253 J;.. 051915202 ':.*C%-'.l:b] 01520253 II:EZC 510152025340

Lecture 5 - 20 Jan 2016

Fei-Fel Li & Andrej Karpathy & Justin Johnson

input layer had mean 0.008501 and std 0.999444 W =_np.randﬂm.raﬁdn{faﬁ in, fan out) / np.Sqrt{fﬂn in/f2) # Iﬂj’-f'lr Initialization
hidden layer 1 had mean 0.562488 and std ©.825232 = = ==

hidden layer 2 had mean ©.553614 and std ©.827835

hidden layer 3 had mean 0.545867 and std ©.813855

hidden layer 4 had mean 0.565396 and std ©.826902

hidden layer 5 had mean 0.547678 and std ©.834092

hidden layer 6 had mean 0.587183 and std ©.860035 e et a .

hidden layer 7 had mean 0.596867 and std 8.870618]

hidden layer 8 had mean 0.623214 and std ©.889348 -

hidden layer 9 had mean 0.567498 and std 0.845357 (n Ote addltlonal /2)
hidden layer 10 had mean ©.552531 and std ©.844523

layer mean layer std

53 088 -
/
062 //'t ca8 o
et 3 087 4
ED / [i
ov
- 1 086 »
59 et \
._.-" \ 085
58 ¥
y 084
0.57 /
5 .‘\ +
5 083
58 k"'*-._.__ / \\\ _— pe 0.85
‘_‘ Jl, ™, o
. e, 0&2 3
35 e sy
) i\ 0.9
s 1 F]] E 5 E 7 B 5 Pelo 1] E 4 5 & 7 B E
300000 2000 eoa00 25500 205500 203400 =ag00 oD 222000 205600 3 0.85
1
250000 LT i 250400 30408 250400 250400 250400 250400 250005 250400 D8R — Eﬁ,b’m-[w,] =1 ours
200000 20002 200400 a0agos 200dos 200400 200400 200400 b T 200400 L i
07y ... fi,Varfw,] = 1 Xavier
150000 150002 150400 153600 150400 15000 150000 150400 150402 150600 : : . ; < - i . :
il 1 2 3 4 5 [T a]
Epoch
100000 10000s 100400 10310 100q00 100400 10040 10000 100403 10800
0000 sadon sp400 0400 s{00 SO0 S 00 SOQ00 S0400 0400

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

Proper initialization is an active area of research...
Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe
et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krahenbuhl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

[loffe and Szegedy, 2015]

Batch Normalization

“you want unit gaussian activations? just make them so.”

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

(k) _ E[p(F)
~(k) — X s

V/ Var[z(¥)] this is a vanilla
differentiable function...

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

[loffe and Szegedy, 2015]

Batch Normalization

“you want unit gaussian activations?
just make them so.”

1. compute the empirical mean and
variance independently for each

dimension.
N X
2. Normalize
() _ »(F) _ E[m(k)]
(k)
D v/ Var[z ()]

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

[loffe and Szegedy, 2015]

Batch Normalization

FC Usually inserted after Fully
Connected / (or Convolutional, as

BN
we’ll see soon) layers, and before

tanh nonlinearity.
FC
BN Problem: do we necessarily ~(k) ﬂi(k} — E [ZI}('IG)}

want a unit gaussian inputto | =

a tanh layer? \/Va]j'[gj(k)}
tanh

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

[loffe and Szegedy, 2015]

Batch Normalization

Normalize:

(k) _ B[k
~(k) — L L

\/Vﬂr[:ll(k)] Note, the network can learn:
And then allow the network to squash & - (k)
the range if it wants to: 7 \/Vﬂl‘[ﬂ} 1
K k)=lk k
y() E 7():E() "I" /8() to recover the identity mapping.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

[loffe and Szegedy, 2015]

Batch Normalization

Input: Values of x over a mini-batch: B = {z| . }; - Improves gradient flow through the network
Parameters to be learned: ~, 3 = Allows higher learning rates
’ _ - Reduces the strong dependence on
tput: . = BN :
Outputs {24 7.8(Ti)} initialization

- Acts as a form of regularization in a funny

1 wa '
. y, and slightly reduces the need for
— — E , -
KB < — 2 17 // mini-batch mean dropout, maybe
4=
1 m
B — E (z; — pB)? // mini-batch variance
i=1
S i — .
Ti + — 5 - // normalize
VO T €

Y; «— vx; + f = BN, g(x;) // scale and shift

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

[loffe and Szegedy, 2015]

Batch Normalization

Input: Values of x over a mini-batch: B = {z| . }; Note: at test time BatchNorm layer functions
Parameters to be learned: v, 3 differently:
tput: : — BN :
Output: {y; 7.6(%i)} The mean/std are not computed based on the
s batch. Instead, a single fixed empirical mean of
) .- activations during training is used
1B < — Z £ // mini-batch mean '
(1§ B
= (e.g. can be estimated during training with running
P o . averages)
B — Z(x% — pg)? // mini-batch variance
i=1
-~ :I: T -
T; — — L // normalize
\/ O'% T
Y; «— vx; + f = BN, g(x;) // scale and shift

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

Remaining Pieces

" Optimizing machine learning " Initialization and batch
objectives: normalization
" Stochastic Descent
" Mini-batches " Computing the gradient Vg(w)

: . " Gradient checking
" Improving generalization

" Drop-out

" Backprop

" Activation functions

Gradient Descent

df(z) .. flz+h)-f(z)
= ik h

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your
iImplementation with numerical gradient

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

Computational Graph

f=Wez| Li=)_,,, max(0,s; — sy, +1)

s (scores) -
loss * L

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

Convolutional Network
(AlexNet)

Input Image

weights
 $

loss

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

Neural Turing Machine

Input tape

loss

—_

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

Neural Turing Machine

f{zy.2)

I >C 3
+ }—
eg.x=-2,y=5,z=-4 y 5

i V:

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

f(:c,,y,z)—(:v Fy)z >Cq 3
+ =
eg.x=-2,y=5,z=-4 y 5

f -12
o dqg 0q z 4
of of
f=qz 0= % — 4
or af of

Want: 3z on® o

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

f -12
— dq Bq_ z 4
of
of of s
f:qz @_Q_Z&E q of
of 0of Of

Want: 3z on® o

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

f(:c,,y,z)—(:v Fy)z >Cq 3
+ =
eg.x=-2,y=5,z=-4 y 5

f-12
1
o dqg @_ 7 4
of
of of _ =
f=qz ag — 0 1 -
of 0f of

Want: 3z on® o

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

f(:c,,y,z)—(:v Fy)z >Cq 3
+ =
eg.x=-2,y=5,z=-4 y 5

f -12
1
o dqg 0q z A
of
of of e
f:qz @_qzzag:q 0z
or af of

Want: 3z on® o

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

f(:c,,y,z)—(:v Fy)z >Cq 3
+ =
eg.x=-2,y=5,z=-4 y 5

i
1
o d , 0q z -4
q=+Y E—l,a—l 3
of
of of i
f=gqz g e 9 0z
of of of

Want: 3z on® o

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

Fou]
1
o dq 0q z -4
q_m—l_y E]-:a_]- 3
of
of of i &
f:qz,’ E:Z,E_q 3q
of Of Of

Want: 3z on® o

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

_ dq 0qg
of
of of 2F
f =gz FTRERC b Jq
of of Of

Want: 3z on® o

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

_ oq ., 0q
of
of of b
f=qz @_q:zrgzq 0y
of 0of Of

Want: 3z on® o

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

g=T+y % 1,%:1
of
of of b i)
f=qz q =% — 4 Chain rule: Ay
. A
of Of of Oy 0q Oy

Want: 3z oy B

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

_ g . 0qg
of
of of ket
f=9z 3 =%% =4 .
of 0of Of

Want: 3z on® o

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

X -2
f(z,y,2) = (z +y)z 4
eg.x=-2,y=5,z=-4 y54
q:m-'-y % 1:%:1 2-34
of
of of o
f=qz g e 9 Chain rule: O
of i of 0q
of Of Of o 0q Ox

Want: 3z on® o

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

—»] activations

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

—»] activations

“local gradient”

0z
ox

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

—»] activations

\ “local gradient”
0z

ox

f Z
L oL
Y o 0z
gradients

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

—»] activations

“local gradient”
X O 0z

< e
Of}> % oz »
A f
gz oL
Oy 0z

graélie\nf\

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

—»] activations

“local gradient”
X O 0z

< e
Of}> % oz »
A f
gz oL
Oy 0z

oL 5,
4 0 graélie\nr\

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

—»] activations

“local gradient”
= @ 0z

< e
§> % Oz >
o f
gz oL
Oy 0z

oL 5,
4 0 graélie\nr\

ei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

1

1.1 E—{wuﬂin+w1$1+w2]

Another example: f(w,z) =

wl 2.00

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

1

1.1 E—{wuﬂin+w1$1+w2]

Another example: f(w,z) =

wl 2.00

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

1

1.1 E—{wuﬂin+w1$1+w2]

Another example: f(w,z) =

wl 2.00

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

1

1.1 E—{wuﬂin+w1$1+w2]

Another example: f(w,z) =

wl 2.00

(=)(1.00) = —0.53

100 A7) 100 o 037 /N [137 N 073
N7 /[053 _J 100

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

1

1.1 E—{wuﬂin+w1$1+w2]

Another example: f(w,z) =

wl 2.00

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

1

1.1 E—{wuﬂin+w1$1+w2]

Another example: f(w,z) =

wl 2.00

1.00 @ -1.00 @ 0.37 @ 1.37 @ 0.73
Kool vy | s S AR N

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

1

1.1 E—{wuﬂin+w1$1+w2]

Another example: f(w,z) =

wl 2.00

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

1

1.1 E—{wuﬂin+w1$1+w2]

Another example: f(w,z) =

wl 2.00

(e71)(—0.53) = —0.20

W oo | D o BT a8t g Bl
‘_1/ -0.20 @ -0.53 \Jrj/ L

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

1

1.1 E—{wuﬂin+w1$1+w2]

Another example: f(w,z) =

wl 2.00

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

1

1.1 E—{wuﬂin+w1$1+w2]

Another example: f(w,z) =

wl 2.00

(-1) * (-0.20) = 0.20

1.00 @ -1.00 @ 0.37 @ 1.37 @ 0.73
N T _EJ 45 U A8 S

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

1

1.1 E—{wuﬂin+w1$1+w2]

Another example: f(w,z) =

wl 2.00

w2 -3.00

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

1

1.1 E—{wuﬂin+w1$1+w2]

Another example: f(w,z) =

wl 2.00

[local gradient] x [its gradient]
[1] x [0.2] = 0.2

4.00 [1] X [0.2] = 0.2 (both inputs!)
0.20

i 1.00 @ -1.00 @ 0.37 @ 1.37 @ 0.73
020 _/ -020 _EJ 45 U A8 S

w2 -3.00
0.20

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

1

1.1 E—{wuﬂin+w1$1+w2]

Another example: f(w,z) =

wl 2.00
\
-2.00

0.20

x0 -1.00

0.20

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

Another example:

x0 -1.00

-2.00
0.20

0.20

Fei-Fel Li & Andrej Karpathy & Justin Johnson

1

1+e

—(wpzp+wi 1 +ws)

[local gradient] x [its gradient]
X0: [2] x[0.2] =0.4
wO: [-1] x [0.2] =-0.2

Lecture 4 -

13 Jan 2016

1 1
f(w,:.r:) = 1+ o — (WoTo+w T +wp) ﬂ'($) = 1te? sigmoid function
do(x) e " 1+e™*—1 1
e (et (1) 0
(1+e%) Te Te

sigmoid gate

1.00 /;1\ -1.00 @ 0.37 @ 1.37 @ 0.73
020 __/ -0.20 _p/ 453 \ /7 A5 | 100

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

Fissad : :

1 + E—{tm]:ﬂu-l—wliﬂl-H.Ug} ﬂ'(iﬂ) - 1 ES e SlngId function

== () (=) = oo

sigmoid gate

1.00 /;1\ -1.00 @ 0.37 @ 1.37 @ 0.73
| N AN NS A% N\ AR |

(0.73) * (1 - 0.73) = 0.2

Fei-Fel Li & Andrej Karpathy & Justin Johnson

Lecture 4 - 13 Jan 2016

Patterns in backward flow

add gate: gradient distributor x 3.00
max gate: gradient router
mul gate: gradient...?

-10.00
2.00

~-20.00
1.00

)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

Gradients add at branches

-

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

Implementation: forward/backward API

Graph (or Net) object. (Rough psuedo code)

class ComputationalGraph(object):

1008 ZEmN <00 . WEF aEe T oy Bl
029@00@ 353@/—-353@109 #...

def forward(inputs):

1. [pass inputs to input gates...]

2. forward the computational graph:

for gate in self.graph.nodes topologically sorted():
gate.forward()

return loss # the final gate in the graph outputs the loss

def backward():

for gate in reversed(self.graph.nodes topologically sorted()):

gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

Implementation: forward/backward API

class MultiplyGate(object):

X
def forward(x,y):
Z
* Zz = X¥y
return z
Y def backward(dz):
dx = ... #todo
dy = ... #todo
return [dx, dy]
(X,y,z are scalars)
oL| .
Ox

oL
0z

13 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 -

Implementation: forward/backward API

class MultiplyGate(object):
def forward(x,y):

X Z = X*y
7 self.x = x # must keep these around!
* self.y = y
return z
)/ def backward(dz):

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]
return [dx, dy]

(X,y,z are scalars)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

Deep Learning Frameworks

TensorFlow (in your Project 6!)
Theano

Torch

CAFFE

Computation Graph Toolkit (CGT)

