
CS 343: Artificial Intelligence

Deep Learning

Profs. Peter Stone and Yuke Zhu — The University of Texas at Austin
[These slides based on those of Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Good morning colleagues!
▪ Past due:

▪ HW1-7: Search, CSPs, Games, MDP, RL, Bayes Nets, Particle Filters/VPI
▪ 11 reading responses:  AI100 report; 10 Textbook readings
▪ P0,1,2,3: tutorial, Search, Multiagent RL
▪ Midterm  

▪ Upcoming EdX Homeworks
▪ HW8: Naive Bayes and Perceptrons – due Monday 4/19 at 11:59 pm
▪ HW9: Neural Networks – due Monday 4/26 at 11:59 pm 

▪ Upcoming programming projects
▪ P4: Bayes Nets – due Wednesday 4/14 at 11:59pm
▪ P5: Particle Filters – due Wednesday 4/21 at 11:59pm
▪ Contest (Capture the flag):  Qualification due 4/28; Finals 5/3 (extra credit)

▪ Readings: SVMs, Kernels, and Clustering – Due Monday 4/19 at 9:30am



Good morning colleagues!

▪ Midterm grades

▪ Some context:
 Deep learning = neural networks
 AI <> Deep Learning
 But...it’s definitely an important area to know about these days
 Applications other than vision and natural language processing?

 Robotics
 Fraud detection
 Game playing (e.g. go, Starcraft)
 Election predictions
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N-Layer Perceptron Network
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N-Layer Neural Network
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Some of Your Questions

▪ What’s the relationship between a weight and a gradient?
 How does gradient ascent work?                                            

 [Policy Grad RL slides]
 [Gradient ascent problem]

 Can gradient ascent be changed to find a global maximum? (Michael Labarca)
▪ What’s the purpose of the activation function?
▪ What exactly is backpropagation?

 [Gradient computation problem]
▪ Are there other ways to train NNs?  (Tyler Miller)

 NEAT



Test Your Understanding

▪Data sufficiency problem

▪Practice problem in breakout rooms

▪Talk about each subproblem individually



Some of Your Questions

 
▪ What’s the purpose of the activation function?
▪ Why are leaky RELU units better than sigmoids or tanh? (Cyrus Mahdavi)
▪ [Representation capacity problem]







non
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Activation Functions

Sigmoid

tanh    tanh(x)

ReLU    max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout

ELU



Some of Your Questions

 
▪ What are hyperparameters and how do you tune them?

 Activation units
 Learning rate
 Momentum parameter
 Dropout parameters
 Normalization scheme
 Number of layers and units (architecture)

▪ How do you design architectures?
 Neural architecture search [NEAT+Q slides]
 Can hyperparameters be made learned parameters? (Conrad Li)
 What’s the difference between adding layers vs. widening a layer? (Michael Labarca)
 Does batch normalization correct for bad initialization?  (Yuhan Zheng)



Some of Your Questions

 
▪ Differences between brain’s NN and artificial NNs design? (Pranooha Veeramachaneni)

 Are NNs designed based on intuition from brain structures?  (Rudraksh Garg)
▪ What are the limitations of NNs? (Jack Si)

 How far can we go with deeper and larger networks? (Trong Lv)
▪ When shouldn’t you use NNs?  (Ethan Houston)



Some of Your Questions

 
▪ Computation requirements of NNs vs. traditional vision classification (Vijay Vuyyuru)

 Training vs. testing
 Depends on hardware
 Why does deep learning work so much better on GPUs?  (Cameron Doggett)

▪ Why manual features favored in past, and only recently NNs favored? (Nalin Mahajan)
▪ If image recognition is so good, why do some websites still require you to identify 

images to check if you’re a robot?  (Jessica Ma)



Some of Your Questions

 
▪ Are there good ways of introducing human knowledge into NNs?  Or is that missing the 

point?  (Tyler Miller)
 Neurosymbolic systems



Review: Linear Classifiers



Feature Vectors

Hello,

Do you want free printr 
cartriges?  Why pay more 
when you can get them 
ABSOLUTELY FREE!  Just

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12  : 1
PIXEL-7,13  : 0
...
NUM_LOOPS   : 1
...

“2”



Some (Simplified) Biology

▪ Very loose inspiration: human neurons



Linear Classifiers

▪ Inputs are feature values
▪ Each feature has a weight
▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1
▪  
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Non-Linearity



Non-Linear Separators

▪ Data that is linearly separable works out great for linear decision rules:

▪ But what are we going to do if the dataset is just too hard? 

▪  

0

0

0

x2

x

x

x

This and next slide adapted from Ray Mooney, UT



Non-Linear Separators

▪ General idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:

Φ:  x → φ(x)



Computer Vision



Object Detection



Manual Feature Design



Features and Generalization

[Dalal and Triggs, 2005]



Features and Generalization

Image HoG



Manual Feature Design Deep Learning

▪ Manual feature design requires:

▪Domain-specific expertise

▪Domain-specific effort

▪ What if we could learn the features, too?
▪ 



Perceptron

S
f1

f2

f3

w1

w2

w3

>0?



Two-Layer Perceptron Network

S

f1

f2

f3

w13

w23

w33

>0?

S

w12

w22

w32

>0?

S

w11

w21

w31

>0?

S

w1

w2

w3

>0?



N-Layer Perceptron Network
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Performance

graph credit Matt 
Zeiler, Clarifai
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Performance

graph credit Matt 
Zeiler, Clarifai

AlexNet



Performance

graph credit Matt 
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AlexNet



Performance

graph credit Matt 
Zeiler, Clarifai

AlexNet



Speech Recognition

graph credit Matt Zeiler, Clarifai



N-Layer Perceptron Network
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Local Search

▪ Simple, general idea:
▪ Start wherever
▪ Repeat: move to the best neighboring state
▪ If no neighbors better than current, quit
▪ Neighbors = small perturbations of w

▪ Properties
▪ Plateaus and local optima

How to escape plateaus and find a good local optimum?

How to deal with very large parameter vectors?  E.g., 



Perceptron
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▪Objective: Classification Accuracy 

▪ Issue: many plateaus   how to measure incremental progress toward a correct label?



Soft-Max

▪Score for y=1:  Score for y=-1: 

▪Probability of label:

▪Objective: 

▪Log: 



Two-Layer Neural Network
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N-Layer Neural Network
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Our Status

▪Our objective    
▪Changes smoothly with changes in w
▪Doesn’t suffer from the same plateaus as the perceptron network

▪Challenge: how to find a good w ?

▪Equivalently:



1-d optimization

▪Could evaluate   and
▪Then step in best direction

▪Or, evaluate derivative:

▪Tells which direction to step in



2-D Optimization

Source: Thomas Jungblut’s Blog



▪ Idea: 
▪ Start somewhere
▪ Repeat:  Take a step in the steepest descent direction

Steepest Descent

Figure source: Mathworks



What is the Steepest Descent Direction?



What is the Steepest Descent Direction?

▪Steepest Direction = direction of the gradient



Optimization Procedure 1: Gradient Descent

▪ Init: 

▪For i = 1, 2, …

▪     : learning rate --- tweaking parameter that needs to be 
chosen carefully

▪How? Try multiple choices
▪Crude rule of thumb: update changes       about 0.1 – 1 %



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge 
towards the minimum with Gradient Descent?
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Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge 
towards the minimum with Gradient Descent?



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge 
towards the minimum with Gradient Descent? very slow 
progress along flat direction, jitter along steep one



Optimization Procedure 2: Momentum

▪ Init: 

▪For i = 1, 2, …

▪Gradient Descent

▪ Init: 

▪For i = 1, 2, …

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)

▪Momentum
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Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge 
towards the minimum with Momentum?



How do we actually compute gradient w.r.t. weights?

Backpropagation!
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Deep learning is everywhere

[Krizhevsky 2012]

Classification Retrieval
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[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Detection Segmentation

[Farabet et al., 2012]

Deep learning is everywhere



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

NVIDIA Tegra X1

self-driving cars

Deep learning is everywhere
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[Toshev, Szegedy 2014]

[Mnih 2013]

Deep learning is everywhere
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[Ciresan et al. 2013] [Sermanet et al. 2011]
[Ciresan et al.]

Deep learning is everywhere



[Vinyals et al., 2015]

Image 
Captioning
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reddit.com/r/deepdream



Remaining Pieces

 Optimizing machine learning 
objectives:
 Stochastic Descent
 Mini-batches

 Improving generalization
 Drop-out

 Activation functions

 Initialization and batch 
normalization

 Computing the gradient
 Backprop
 Gradient checking 



Mini-batches and Stochastic Gradient Descent

 Typical objective:

 = average log-likelihood of label given input

= estimate based on mini-batch 1…k
 Mini-batch gradient descent: compute gradient on mini-batch (+ cycle 

over mini-batches: 1..k, k+1…2k, ... ; make sure to randomize 
permutation of data!)

 Stochastic gradient descent: k = 1



Remaining Pieces

 Optimizing machine learning 
objectives:
 Stochastic Descent
 Mini-batches

 Improving generalization
 Drop-out

 Activation functions

 Initialization and batch 
normalization

 Computing the gradient
 Gradient checking 
 Backprop
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Regularization: Dropout
“randomly set some neurons to zero in the forward pass”

[Srivastava et al., 2014]



91

Waaaait a second… 
How could this possibly be a good idea?



92

Forces the network to have a redundant representation.

has an ear

has a tail

is furry

has claws

mischievous 
look

cat 
score

X

X

X

Waaaait a second… 
How could this possibly be a good idea?
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Another interpretation:

Dropout is training a large ensemble 
of models (that share parameters).

Each binary mask is one model, gets 
trained on only ~one datapoint.

Waaaait a second… 
How could this possibly be a good idea?
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At test time….

Ideally: 
want to integrate out all the noise

Sampling-based approximation:
do many forward passes with 
different dropout masks, average all 
predictions
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At test time….
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

Q: Suppose that with all inputs present at 
test time the output of this neuron is x.

What would its output be during training 
time, in expectation? (e.g. if p = 0.5)
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At test time….
Can in fact do this with a single forward pass! (approximately)

x y

Leave all input neurons turned on (no dropout).

during test: a = w0*x + w1*y
during train:
E[a] = ¼ * (w0*0 + w1*0

  w0*0 + w1*y
  w0*x + w1*0

  w0*x + w1*y)
       = ¼ * (2 w0*x + 2 w1*y)

  = ½ * (w0*x + w1*y)

a

w0 w1
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At test time….
Can in fact do this with a single forward pass! (approximately)

x y

Leave all input neurons turned on (no dropout).

during test: a = w0*x + w1*y
during train:
E[a] = ¼ * (w0*0 + w1*0

  w0*0 + w1*y
  w0*x + w1*0

  w0*x + w1*y)
       = ¼ * (2 w0*x + 2 w1*y)

  = ½ * (w0*x + w1*y)

a

With p=0.5, using all inputs 
in the forward pass would 
inflate the activations by 2x 
from what the network was 
“used to” during training!
=> Have to compensate by 
scaling the activations back 
down by ½ w0 w1



Remaining Pieces

 Optimizing machine learning 
objectives:
 Stochastic Descent
 Mini-batches

 Improving generalization
 Drop-out

 Activation functions

 Initialization and batch 
normalization

 Computing the gradient
 Gradient checking 
 Backprop
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Activation Functions

Sigmoid

tanh    tanh(x)

ReLU    max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout

ELU



Remaining Pieces

 Optimizing machine learning 
objectives:
 Stochastic Descent
 Mini-batches

 Improving generalization
 Drop-out

 Activation functions

 Initialization and batch 
normalization

 Computing the gradient
 Gradient checking 
 Backprop
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- Q: what happens when W=0 init is used?
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- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)
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- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but can lead to 
non-homogeneous distributions of activations 
across the layers of a network.
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Lets look at 
some 
activation 
statistics

E.g. 10-layer net with 500 
neurons on each layer, using 
tanh non-linearities, and 
initializing as described in last 
slide.
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All activations 
become zero!

Q: What do the 
gradients look like?
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Almost all neurons 
completely 
saturated, either -1 
and 1. Gradients 
will be all zero.

*1.0 instead of *0.01
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“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation assumes 
linear activations)
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but when using the ReLU 
nonlinearity it breaks.
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He et al., 2015
(note additional /2)
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He et al., 2015
(note additional /2)
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Proper initialization is an active area of research…

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe 
et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and 
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet 
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015
…
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Batch Normalization

“you want unit gaussian activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations at some layer. 
To make each dimension unit gaussian, apply:

this is a vanilla 
differentiable function...
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Batch Normalization

“you want unit gaussian activations? 
just make them so.”

[Ioffe and Szegedy, 2015]

XN

D

1. compute the empirical mean and 
variance independently for each 
dimension.

2. Normalize
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Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 
Connected / (or Convolutional, as 
we’ll see soon) layers, and before 
nonlinearity.

Problem: do we necessarily 
want a unit gaussian input to 
a tanh layer?
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Batch Normalization [Ioffe and Szegedy, 2015]

And then allow the network to squash 
the range if it wants to:

Note, the network can learn:

to recover the identity mapping.

Normalize:
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Batch Normalization [Ioffe and Szegedy, 2015]

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on 

initialization
- Acts as a form of regularization in a funny 

way, and slightly reduces the need for 
dropout, maybe
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Batch Normalization [Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer functions 
differently:

The mean/std are not computed based on the 
batch. Instead, a single fixed empirical mean of 
activations during training is used.

(e.g. can be estimated during training with running 
averages)



Remaining Pieces

 Optimizing machine learning 
objectives:
 Stochastic Descent
 Mini-batches

 Improving generalization
 Drop-out

 Activation functions

 Initialization and batch 
normalization

 Computing the gradient
 Gradient checking 
 Backprop
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Gradient Descent

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your 
implementation with numerical gradient
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Computational Graph

x

W

* hinge 
loss

R

+ L
s (scores)
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Convolutional Network
(AlexNet)

input image
weights

loss
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Neural Turing Machine

input tape

loss
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Neural Turing Machine
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e.g. x = -2, y = 5, z = -4
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:
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f

activations
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f

activations

“local gradient”
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f

activations

“local gradient”

gradients
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f

activations

gradients

“local gradient”
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f

activations

gradients

“local gradient”
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f

activations

gradients

“local gradient”
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:

(-1) * (-0.20) = 0.20
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Another example:
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Another example:

[local gradient] x [its gradient]
[1] x [0.2] = 0.2
[1] x [0.2] = 0.2  (both inputs!)
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Another example:
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Another example:

[local gradient] x [its gradient]
x0: [2] x [0.2] = 0.4
w0: [-1] x [0.2] = -0.2
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sigmoid function

sigmoid gate



Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016162

sigmoid function

sigmoid gate

(0.73) * (1 - 0.73) = 0.2
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Patterns in backward flow

add gate: gradient distributor
max gate: gradient router
mul gate: gradient…?
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Gradients add at branches

+
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Implementation:   forward/backward API

Graph (or Net) object. (Rough psuedo code)
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Implementation:   forward/backward API

(x,y,z are scalars)

*

x

y

z
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Implementation:   forward/backward API

(x,y,z are scalars)

*

x

y

z



Deep Learning Frameworks

TensorFlow  (in your Project 6!)

Theano

Torch

CAFFE

Computation Graph Toolkit (CGT)




