

Answer the question based on the given Bayes Net. All variables have domains of {0, 1}

- (1) Before eliminating any variables or including any evidence, how many entries does the factor f(C,A,B) have?
- Now to answer the query P(B|d=1), you pick C as the first variable to be eliminated. How many entries does the factor have if we eliminate C?
- (3) Compute the result of joining P(B|A) and P(C|A, B)? And the result if we further marginalize over B?

(1) The factor is P(C|A, B). Because none of the variable elimination is done, we have $2^3 = 8$ entries.

(2) $f(A, B, d) = \sum_{c \in \{-0, 1\}} p(B|A)p(c|A, B)p(d|c)$. So the factor as 2²=4 entries.

(3) By joining P(B|A) and P(C|A, B), we have P(C, B|A). And its corresponding distribution table is as follows:

Each entry is computed by: p(c, b|a) = p(b|a)p(c|a, b).

P(C, B A)				
a=0	b=0	c=0	0.4	
a=0	b=0	c=1	0.1	
a=0	b=1	c=0	0.3	
a=0	b=1	c=1	0.2	
a=1	b=0	c=0	0.04	
a=1	b=0	c=1	0.16	
a=1	b=1	c=0	0.08	
a=1	b=1	c=1	0.72	

(continuing) And we further marginalize P(C, B|A) over B, and we can obtain the distribution p(C|A):

P(C A)			
a=0	c=0	0.7	
a=0	c=1	0.3	
a=1	c=0	0.12	
a=1	c=1	0.88	

Each entry is computed by: $p(c|a) = \sum_{b} p(c, b|a)$.