Which of the following paths is a feasible trajectory for the gradient ascent algorithm?

Neural Nets

Consider the following computation graph for a simple neural network for binary classification. Here x is a single real-valued input feature with an associated class y^* (0 or 1). There are two weight parameters w_1 and w_2 , and non-linearity functions g_1 and g_2 (to be defined later, below). The network will output a value a_2 between 0 and 1, representing the probability of being in class 1. We will be using a loss function *Loss* (to be defined later, below), to compare the prediction a_2 with the true class y^* .

1. Perform the forward pass on this network, writing the output values for each node z_1 , a_1 , z_2 and a_2 in terms of the node's input values:

- 2. Compute the loss $Loss(a_2, y^*)$ in terms of the input x, weights w_i , and activation functions g_i :
- 3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive $\frac{\partial Loss}{\partial w_2}$. Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the node's output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be helpful; you may use any of those variables.)

4. Suppose the loss function is quadratic, $Loss(a_2, y^*) = \frac{1}{2}(a_2 - y^*)^2$, and g_1 and g_2 are both sigmoid functions $g(z) = \frac{1}{1+e^{-z}}$ (note: it's typically better to use a different type of loss, *cross-entropy*, for classification problems, but we'll use this to make the math easier).

Using the chain rule from Part 3, and the fact that $\frac{\partial g(z)}{\partial z} = g(z)(1 - g(z))$ for the sigmoid function, write $\frac{\partial Loss}{\partial w_2}$ in terms of the values from the forward pass, y^* , a_1 , and a_2 :

5. Now use the chain rule to derive $\frac{\partial Loss}{\partial w_1}$ as a product of partial derivatives at each node used in the chain rule:

6. Finally, write $\frac{\partial Loss}{\partial w_1}$ in terms of x, y^*, w_i, a_i, z_i :

7. What is the gradient descent update for w_1 with step-size α in terms of the values computed above?

Which of the following paths is a feasible trajectory for the gradient ascent algorithm?

A is a gradient ascent path since the gradient lines are orthogonal to the contours and the point towards the maximum. B is also a gradient ascent path with a high learning rate. C is not because the path is going towards the minimum instead of the maximum. D is not a gradient ascent path since the gradient is not orthogonal to the contour lines. E is not a gradient ascent path since it starts going towards the minimum. F is not since it goes towards the minimum and the gradients are not orthogonal to the contour lines.

Q2. Neural Nets

Consider the following computation graph for a simple neural network for binary classification. Here x is a single real-valued input feature with an associated class y^* (0 or 1). There are two weight parameters w_1 and w_2 , and non-linearity functions g_1 and g_2 (to be defined later, below). The network will output a value a_2 between 0 and 1, representing the probability of being in class 1. We will be using a loss function *Loss* (to be defined later, below), to compare the prediction a_2 with the true class y^* .

- 1. Perform the forward pass on this network, writing the output values for each node z_1 , a_1 , z_2 and a_2 in terms of the node's input values:
 - $z_1 = x * w_1$ $a_1 = g_1(z_1)$ $z_2 = a_1 * w_2$ $a_2 = g_2(z_2)$
- 2. Compute the loss $Loss(a_2, y^*)$ in terms of the input *x*, weights w_i , and activation functions g_i : Recursively substituting the values computed above, we have:

 $Loss(a_2, y^{\star}) = Loss(g_2(w_2 * g_1(w_1 * x)), y^{\star})$

3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive $\frac{\partial Loss}{\partial w_2}$. Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the node's output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be helpful; you may use any of those variables.)

 $\frac{\partial Loss}{\partial w_2} = \frac{\partial Loss}{\partial a_2} \frac{\partial a_2}{\partial z_2} \frac{\partial z_2}{\partial w_2}$

4. Suppose the loss function is quadratic, $Loss(a_2, y^*) = \frac{1}{2}(a_2 - y^*)^2$, and g_1 and g_2 are both sigmoid functions $g(z) = \frac{1}{1+e^{-z}}$ (note: it's typically better to use a different type of loss, *cross-entropy*, for classification problems, but we'll use this to make the math easier).

Using the chain rule from Part 3, and the fact that $\frac{\partial g(z)}{\partial z} = g(z)(1 - g(z))$ for the sigmoid function, write $\frac{\partial Loss}{\partial w_2}$ in terms of the values from the forward pass, y^* , a_1 , and a_2 :

First we'll compute the partial derivatives at each node:

$$\frac{\partial Loss}{\partial a_2} = (a_2 - y^*)$$
$$\frac{\partial a_2}{\partial z_2} = \frac{\partial g_2(z_2)}{\partial z_2} = g_2(z_2)(1 - g_2(z_2)) = a_2(1 - a_2)$$
$$\frac{\partial z_2}{\partial w_2} = a_1$$

Now we can plug into the chain rule from part 3:

$$\frac{\partial Loss}{\partial w_2} = \frac{\partial Loss}{\partial a_2} \frac{\partial a_2}{\partial z_2} \frac{\partial a_2}{\partial w_2}$$
$$= (a_2 - y^*) * a_2(1 - a_2) * a_1$$

5. Now use the chain rule to derive $\frac{\partial Loss}{\partial w_1}$ as a product of partial derivatives at each node used in the chain rule:

$$\frac{\partial Loss}{\partial w_1} = \frac{\partial Loss}{\partial a_2} \frac{\partial a_2}{\partial z_2} \frac{\partial a_2}{\partial a_1} \frac{\partial a_1}{\partial z_1} \frac{\partial z_1}{\partial w_1}$$

6. Finally, write $\frac{\partial Loss}{\partial w_1}$ in terms of x, y^*, w_i, a_i, z_i : The partial derivatives at each node (in addition to the ones we computed in Part 4) are:

$$\frac{\partial z_2}{\partial a_1} = w_2$$

$$\frac{\partial a_1}{\partial z_1} = \frac{\partial g_1(z_1)}{\partial z_1} = g_1(z_1)(1 - g_1(z_1)) = a_1(1 - a_1)$$

$$\frac{\partial z_1}{\partial a_1} = x$$

Plugging into the chain rule from Part 5 gives:

$$\frac{\partial Loss}{\partial w_1} = \frac{\partial Loss}{\partial a_2} \frac{\partial a_2}{\partial z_2} \frac{\partial a_2}{\partial a_1} \frac{\partial a_1}{\partial z_1} \frac{\partial z_1}{\partial w_1}$$
$$= (a_2 - y^*) * a_2(1 - a_2) * w_2 * a_1(1 - a_1) * x$$

7. What is the gradient descent update for w_1 with step-size α in terms of the values computed above?

$$w_1 \leftarrow w_1 - \alpha(a_2 - y^{\star}) * a_2(1 - a_2) * w_2 * a_1(1 - a_1) * x$$