
Which of the following paths is a feasible trajectory for the gradient ascent algorithm?



Neural Nets
Consider the following computation graph for a simple neural network for binary classification. Here x is a single real-valued 
input feature with an associated class y⋆ (0 or 1). There are two weight parameters w1 and w2, and non-linearity functions g1 
and g2 (to be defined later, below). The network will output a value a2 between 0 and 1, representing the probability of being in 
class 1. We will be using a loss function Loss (to be defined later, below), to compare the prediction a 2 with the true class y⋆.

x

w1

∗ g1

w2

∗ g2

y∗

Loss
z1 → a1 → z2 → a2 →

1. Perform the forward pass on this network, writing the output values for each node z1, a1, z2 and a2 in terms of the node’s
input values:

2. Compute the loss Loss(a2, y⋆) in terms of the input x, weights wi, and activation functions gi:

3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive )Loss
)w2

. Write your
expression as a product of partial derivatives at each node: i.e. the partial derivative of the node’s output with respect to
its inputs. (Hint: the series of expressions you wrote in part 1 will be helpful; you may use any of those variables.)



4. Suppose the loss function is quadratic,Loss(a2, y⋆) =
1
2 (a2−y

⋆)2, and g1 and g2 are both sigmoid functions g(z) = 1
1+e−z

(note: it’s typically better to use a different type of loss, cross-entropy, for classification problems, but we’ll use this to
make the math easier).
Using the chain rule from Part 3, and the fact that )g(z))z = g(z)(1 − g(z)) for the sigmoid function, write )Loss

)w2
in terms of

the values from the forward pass, y⋆, a1, and a2:

5. Now use the chain rule to derive )Loss
)w1

as a product of partial derivatives at each node used in the chain rule:

6. Finally, write )Loss
)w1

in terms of x, y⋆, wi, ai, zi:

7. What is the gradient descent update for w1 with step-size � in terms of the values computed above?

x

w1

∗ g1

w2

∗ g2

y∗

Loss
z1 → a1 → z2 → a2 →



� A � B � C � D � E � F

A is a gradient ascent path since the gradient lines are orthogonal to the contours and the point towards the
maximum. B is also a gradient ascent path with a high learning rate. C is not because the path is going towards
the minimum instead of the maximum. D is not a gradient ascent path since the gradient is not orthogonal to
the contour lines. E is not a gradient ascent path since it starts going towards the minimum. F is not since it
goes towards the minimum and the gradients are not orthogonal to the contour lines.

Which of the following paths is a feasible trajectory for the gradient ascent algorithm?



Q2. Neural Nets
Consider the following computation graph for a simple neural network for binary classification. Here x is a single real-valued
input feature with an associated class y⋆ (0 or 1). There are two weight parameters w1 and w2, and non-linearity functions g1
and g2 (to be defined later, below). The network will output a value a2 between 0 and 1, representing the probability of being in
class 1. We will be using a loss function Loss (to be defined later, below), to compare the prediction a2 with the true class y⋆.

x

w1

∗ g1

w2

∗ g2

y∗

Loss
z1 → a1 → z2 → a2 →

1. Perform the forward pass on this network, writing the output values for each node z1, a1, z2 and a2 in terms of the node’s
input values:

z1 = x ∗ w1

a1 = g1(z1)
z2 = a1 ∗ w2

a2 = g2(z2)

2. Compute the loss Loss(a2, y⋆) in terms of the input x, weights wi, and activation functions gi:
Recursively substituting the values computed above, we have:

Loss(a2, y⋆) = Loss(g2(w2 ∗ g1(w1 ∗ x)), y⋆)

3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive )Loss
)w2

. Write your
expression as a product of partial derivatives at each node: i.e. the partial derivative of the node’s output with respect to
its inputs. (Hint: the series of expressions you wrote in part 1 will be helpful; you may use any of those variables.)

)Loss
)w2

= )Loss
)a2

)a2
)z2

)z2
)w2

2



4. Suppose the loss function is quadratic,Loss(a2, y⋆) =
1
2 (a2−y

⋆)2, and g1 and g2 are both sigmoid functions g(z) = 1
1+e−z

(note: it’s typically better to use a different type of loss, cross-entropy, for classification problems, but we’ll use this to
make the math easier).
Using the chain rule from Part 3, and the fact that )g(z))z = g(z)(1 − g(z)) for the sigmoid function, write )Loss

)w2
in terms of

the values from the forward pass, y⋆, a1, and a2:
First we’ll compute the partial derivatives at each node:

)Loss
)a2

= (a2 − y⋆)

)a2
)z2

=
)g2(z2)
)z2

= g2(z2)(1 − g2(z2)) = a2(1 − a2)

)z2
)w2

= a1

Now we can plug into the chain rule from part 3:

)Loss
)w2

= )Loss
)a2

)a2
)z2

)z2
)w2

= (a2 − y⋆) ∗ a2(1 − a2) ∗ a1

5. Now use the chain rule to derive )Loss
)w1

as a product of partial derivatives at each node used in the chain rule:

)Loss
)w1

= )Loss
)a2

)a2
)z2

)z2
)a1

)a1
)z1

)z1
)w1

6. Finally, write )Loss
)w1

in terms of x, y⋆, wi, ai, zi: The partial derivatives at each node (in addition to the ones we computed
in Part 4) are:

)z2
)a1

= w2

)a1
)z1

=
)g1(z1)
)z1

= g1(z1)(1 − g1(z1)) = a1(1 − a1)

)z1
)a1

= x

Plugging into the chain rule from Part 5 gives:

)Loss
)w1

= )Loss
)a2

)a2
)z2

)z2
)a1

)a1
)z1

)z1
)w1

= (a2 − y⋆) ∗ a2(1 − a2) ∗ w2 ∗ a1(1 − a1) ∗ x

7. What is the gradient descent update for w1 with step-size � in terms of the values computed above?

w1 ← w1 − �(a2 − y⋆) ∗ a2(1 − a2) ∗ w2 ∗ a1(1 − a1) ∗ x

3


