CS 343: Artificial Intelligence

Constraint Satisfaction Problems

Profs. Peter Stone and Yuke Zhu

The University of Texas at Austin

[These slides are based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Announcements

- **Homework 2: CSPs**
 - Has been released! Due Monday 2/15, at 11:59 pm.

- **Reading: Adversarial Search, Utilities**
 - Chapter 5 and Chapter 16. Due Monday 2/8, at 9:30 am.

- **Project 1: Search**
 - Reminder: Due Wednesday 2/10 at 11:59 pm

- **Homework 1: Search**
 - Reminder: Due Monday 2/8 at 11:59 pm
What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance

- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems
Constraint Satisfaction Problems

- **Standard search problems:**
 - State is a “black box”: arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything

- **Constraint satisfaction problems (CSPs):**
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Allows useful general-purpose algorithms with more power than standard search algorithms
Example: Map Coloring

- **Variables:** WA, NT, Q, NSW, V, SA, T
- **Domains:** $D = \{\text{red, green, blue}\}$
- **Constraints:** adjacent regions must have different colors
 - Implicit: WA \neq NT
 - Explicit: $(WA, NT) \in \{(\text{red, green}), (\text{red, blue}), \ldots\}$
- **Solutions are assignments satisfying all constraints,** e.g.:
 $$\{WA=\text{red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}\}$$
Example: N-Queens

- **Formulation 1:**
 - Variables: X_{ij}
 - Domains: $\{0, 1\}$
 - Constraints

\[
\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \\
\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\} \\
\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\} \\
\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\} \\
\sum_{i,j} X_{ij} = N
\]
Example: N-Queens

- **Formulation 2:**
 - **Variables:** Q_k
 - **Domains:** $\{1, 2, 3, \ldots N\}$
 - **Constraints:**
 - Implicit: $\forall i, j \text{ non-threatening}(Q_i, Q_j)$
 - Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$
 - \ldots
Some of Your Questions

- What is arc consistency? Visualization of arc consistency
- Real-world examples that CSP solves
- Difference in state representation between search algorithms and constraint satisfaction problems
- Were CSPs used to solve certain NP-hard problems or to specifically add insight to the P vs. NP debate? (Kauppinen)
- Can any problem be turned into a CSP? (Ramya Prasad)
Constraint Graphs
Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!
Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods
Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equivalent to reducing domains), e.g.:
 \[SA \neq \text{green} \]
 - Binary constraints involve pairs of variables, e.g.:
 \[SA \neq WA \]
 - Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints

- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)
Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

- Many real-world problems involve real-valued variables...
Standard Search Formulation

- Standard search formulation of CSPs

- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

- We’ll start with the straightforward, naïve approach, then improve it
Search Methods

- What would BFS do?
- What would DFS do?
- What problems does naïve search have?
Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs

- **Idea 1: One variable at a time**
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step

- **Idea 2: Check constraints as you go**
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to check the constraints
 - “Incremental goal test”

- Depth-first search with these two improvements is called *backtracking search* (not the best name)

- Can solve n-queens for $n \approx 25$
Backtracking Search

```python
function BACKTRACKING-SEARCH(csp) returns solution/failure
    return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
    if assignment is complete then return assignment
    var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
    for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
        if value is consistent with assignment given CONSTRAINTS[csp] then
            add {var = value} to assignment
            result ← RECURSIVE-BACKTRACKING(assignment, csp)
            if result ≠ failure then return result
            remove {var = value} from assignment
    return failure
```

- Backtracking = DFS + variable-ordering + fail-on-violation
Improving Backtracking

- General-purpose ideas give huge gains in speed

- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?

- Filtering: Can we detect inevitable failure early?

- Structure: Can we exploit the problem structure?
Filtering: Keep track of domains for unassigned variables and cross off bad options

Forward checking: Cross off values that violate a constraint when added to the existing assignment
Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:
 - NT and SA cannot both be blue!
 - Why didn’t we detect this yet?
 - *Constraint propagation*: reason from constraint to constraint
An arc $X \rightarrow Y$ is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint.

Forward checking: Enforcing consistency of arcs pointing to each new assignment.

Delete from the tail!
Arc Consistency of an Entire CSP

- (Constraint propagation) A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What’s the downside of enforcing arc consistency?

![Map of Australia with states WA, NT, Q, NSW, V, SA labeled.]}
Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

- Arc consistency still runs inside a backtracking search!

What went wrong here?
Ordering: Minimum Remaining Values

- **Variable Ordering: Minimum remaining values (MRV):**
 - Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering
Ordering: Least Constraining Value

- **Value Ordering: Least Constraining Value**
 - Given a choice of variable, choose the *least constraining value*
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)

- Why least rather than most?

- Combining these ordering ideas makes 1000 queens feasible
Enforcing Arc Consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \(\{X_1, X_2, \ldots, X_n\} \)
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
 \((X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)\)
 if \text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) \text{ then}
 for each \(X_k\) in Neighbors[X_i] do
 add \((X_k, X_i)\) to queue

function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true iff succeeds
removed \leftarrow false
for each \(x\) in \text{DOMAIN}[X_i] do
 if no value \(y\) in \text{DOMAIN}[X_j] allows \((x,y)\) to satisfy the constraint \(X_i \leftrightarrow X_j\)
 then delete \(x\) from \text{DOMAIN}[X_i]; removed \leftarrow true
return removed

- Runtime: \(O(n^2d^3)\), can be reduced to \(O(n^2d^2)\)
- ... but detecting all possible future problems is NP-hard – why?