CS 343: Artificial Intelligence

Deep Learning

Profs. Peter Stone and Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu]
Good morning colleagues!

- **Past due:**
 - HW1-7: Search, CSPs, Games, MDP, RL, Bayes Nets, Particle Filters/VPI
 - 11 reading responses: AI100 report; 10 Textbook readings
 - P0,1,2,3: tutorial, Search, Multiagent RL
 - Midterm

- **Upcoming EdX Homeworks**
 - HW8: Naive Bayes and Perceptrons – due Monday 4/19 at 11:59 pm
 - HW9: Neural Networks – due Monday 4/26 at 11:59 pm

- **Upcoming programming projects**
 - P4: Bayes Nets – due Wednesday 4/14 at 11:59 pm
 - P5: Particle Filters – due Wednesday 4/21 at 11:59 pm
 - Contest (Capture the flag): Qualification due 4/28; Finals 5/3 (extra credit)

- **Readings:** SVMs, Kernels, and Clustering – Due Monday 4/19 at 9:30am
Good morning colleagues!

- Midterm grades

- Some context:
 - Deep learning = neural networks
 - AI <> Deep Learning
 - But...it’s definitely an important area to know about these days
 - Applications other than vision and natural language processing?
 - Robotics
 - Fraud detection
 - Game playing (e.g. go, Starcraft)
 - Election predictions
Perceptron

\[w_1 f_1 + w_2 f_2 + w_3 f_3 > 0? \]
Two-Layer Perceptron Network

$$h_w(f(x))$$
N-Layer Perceptron Network

\[h_w(f(x)) \]
N-Layer Neural Network
Some of Your Questions

▪ What’s the relationship between a weight and a gradient?
 • How does gradient ascent work?
 • [Policy Grad RL slides]
 • [Gradient ascent problem]
 • Can gradient ascent be changed to find a global maximum? (Michael Labarca)
▪ What’s the purpose of the activation function?
▪ What exactly is backpropagation?
 • [Gradient computation problem]
▪ Are there other ways to train NNs? (Tyler Miller)
 • NEAT
Test Your Understanding

▪ Data sufficiency problem

▪ Practice problem in breakout rooms

▪ Talk about each subproblem individually
Some of Your Questions

- What’s the purpose of the activation function?
- Why are leaky RELU units better than sigmoids or tanh? (Cyrus Mahdavi)
- [Representation capacity problem]
What Can be Done with Non-Linear (e.g., Threshold) Units?

1 layer of trainable weights

separating hyperplane
2 layers of trainable weights

convex polygon region
3 layers of trainable weights

composition of polygons: non convex regions
Activation Functions

Sigmoid

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

tanh \(\tanh(x) \)

ReLU \(\max(0, x) \)

Leaky ReLU \(\max(0.1x, x) \)

Maxout \(\max(w_1^T x + b_1, w_2^T x + b_2) \)

ELU

\[f(x) = \begin{cases}
 x & \text{if } x > 0 \\
 \alpha (\exp(x) - 1) & \text{if } x \leq 0
\end{cases} \]
Some of Your Questions

- What are hyperparameters and how do you tune them?
 - Activation units
 - Learning rate
 - Momentum parameter
 - Dropout parameters
 - Normalization scheme
 - Number of layers and units (architecture)

- How do you design architectures?
 - Neural architecture search [*NEAT+Q slides*]
 - Can hyperparameters be made learned parameters? (Conrad Li)
 - What's the difference between adding layers vs. widening a layer? (Michael Labarca)
 - Does batch normalization correct for bad initialization? (Yuhan Zheng)
Some of Your Questions

- Differences between brain’s NN and artificial NNs design? (Pranooha Veeramachaneni)
 - Are NNs designed based on intuition from brain structures? (Rudraksh Garg)
- What are the limitations of NNs? (Jack Si)
 - How far can we go with deeper and larger networks? (Trong Lv)
- When shouldn’t you use NNs? (Ethan Houston)
Some of Your Questions

- Computation requirements of NNs vs. traditional vision classification (Vijay Vuyyuru)
 - Training vs. testing
 - Depends on hardware
 - Why does deep learning work so much better on GPUs? (Cameron Doggett)

- Why manual features favored in past, and only recently NNs favored? (Nalin Mahajan)

- If image recognition is so good, why do some websites still require you to identify images to check if you’re a robot? (Jessica Ma)
Some of Your Questions

- Are there good ways of introducing human knowledge into NNs? Or is that missing the point? (Tyler Miller)
 - Neurosymbolic systems
Review: Linear Classifiers
Hello,
Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just

Hello,

Hello,

SPAM
or

“2”
Some (Simplified) Biology

- Very loose inspiration: human neurons
Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

\[\text{activation}_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x) \]

- If the activation is:
 - Positive, output +1
Non-Linearity
Non-Linear Separators

- Data that is linearly separable works out great for linear decision rules:

- But what are we going to do if the dataset is just too hard?
Non-Linear Separators

- General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

$$\Phi: x \rightarrow \phi(x)$$
Computer Vision
Object Detection
Manual Feature Design
Features and Generalization

[Dalal and Triggs, 2005]
Features and Generalization

Image

HoG
Manual Feature Design → Deep Learning

- Manual feature design requires:
 - Domain-specific expertise
 - Domain-specific effort

- What if we could learn the features, too?
Perceptron
Two-Layer Perceptron Network

\[h_w(f(x)) \]
N-Layer Perceptron Network
Performance

ImageNet Error Rate 2010-2014

Error Rate

- 79%
- 60%
- 40%
- 20%
- 7%

Year

- 2010
- 2011
- 2012
- 2013
- 2014

Traditional CV

Graph credit: Matt Zeiler, Clarifai
Performance

ImageNet Error Rate 2010-2014

graph credit Matt Zeiler, Clarifai
Performance

ImageNet Error Rate 2010-2014

- Traditional CV
- Deep Learning

Error Rate

2010 2011 2012 2013 2014

AlexNet

graph credit Matt Zeiler, Clarifai
Performance

ImageNet Error Rate 2010-2014

AlexNet

graph credit Matt Zeiler, Clarifai
Performance

ImageNet Error Rate 2010-2014

- Traditional CV
- Deep Learning

Error Rate

AlexNet

graph credit Matt Zeiler, Clarifai
Speech Recognition

TIMIT Speech Recognition

- Traditional
- Deep Learning

Error Rate

Graph credit Matt Zeiler, Clarifai
N-Layer Perceptron Network

\[h_w(f(x)) \]
Local Search

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit
 - Neighbors = small perturbations of w

- Properties
 - Plateaus and local optima

How to escape plateaus and find a good local optimum?
How to deal with very large parameter vectors? E.g., $w \in \mathbb{R}^{1\text{ billion}}$
Objective: Classification Accuracy

\[l^{\text{acc}}(w) = \frac{1}{m} \sum_{i=1}^{m} \left(\text{sign}(w^\top f(x^{(i)})) = y^{(i)} \right) \]

Issue: many plateaus \[\rightarrow \] how to measure incremental progress toward a correct label?
Soft-Max

- Score for $y=1$: $w^T f(x)$
- Score for $y=-1$: $-w^T f(x)$

- Probability of label:

 $p(y = 1|f(x); w) = \frac{e^{w^T f(x^{(i)})}}{e^{w^T f(x)} + e^{-w^T f(x)}}$
 $p(y = -1|f(x); w) = \frac{e^{-w^T f(x)}}{e^{w^T f(x)} + e^{-w^T f(x)}}$

- Objective:

 $l(w) = \prod_{i=1}^{m} p(y = y^{(i)}|f(x^{(i)}); w)$

- Log:

 $ll(w) = \sum_{i=1}^{m} \log p(y = y^{(i)}|f(x^{(i)}); w)$
Two-Layer Neural Network

\[
\begin{align*}
S & f_1 \\
S & f_2 \\
S & f_3 \\
\end{align*}
\]

\[
\begin{align*}
& w_{11} \\
& w_{21} \\
& w_{31} \\
& w_{12} \\
& w_{22} \\
& w_{32} \\
& w_{13} \\
& w_{23} \\
& w_{33} \\
\end{align*}
\]

\[
z \rightarrow \frac{e^z}{e^z + e^{-z}}
\]
N-Layer Neural Network
Our Status

- **Our objective** $ll(w)$
 - Changes smoothly with changes in w
 - Doesn’t suffer from the same plateaus as the perceptron network

- **Challenge:** how to find a good w?

$$\max_{w} ll(w)$$

- Equivalently:
 $$\min_{w} -ll(w)$$
1-d optimization

- Could evaluate $g(w_0 + h)$ and $g(w_0 - h)$.
- Then step in best direction.

- Or, evaluate derivative: $\frac{\partial g(w_0)}{\partial w} = \lim_{h \to 0} \frac{g(w_0 + h) - g(w_0 - h)}{2h}$
- Tells which direction to step in.
2-D Optimization

Source: Thomas Jungblut's Blog
Steepest Descent

- Idea:
 - Start somewhere
 - Repeat: Take a step in the steepest descent direction

Figure source: Mathworks
What is the Steepest Descent Direction?
What is the Steepest Descent Direction?

- Steepest Direction = direction of the gradient

\[\nabla g = \begin{bmatrix}
\frac{\partial g}{\partial w_1} \\
\frac{\partial g}{\partial w_2} \\
\vdots \\
\frac{\partial g}{\partial w_n}
\end{bmatrix} \]
Optimization Procedure 1: Gradient Descent

- **Init:** w
- **For** $i = 1, 2, ...$

$$w \leftarrow w - \alpha \nabla g(w)$$

- α: learning rate --- tweaking parameter that needs to be chosen carefully
- **How?** Try multiple choices
 - Crude rule of thumb: update changes w about 0.1 – 1%
Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge towards the minimum with Gradient Descent?
Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge towards the minimum with Gradient Descent?
Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge towards the minimum with Gradient Descent? very slow progress along flat direction, jitter along steep one
Optimization Procedure 2: Momentum

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
- \(\mu \approx 0.5, 0.9, \text{ or } 0.99 \) (Sometimes annealed over time, e.g. from 0.5 -> 0.99)
Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge towards the minimum with Momentum?
How do we actually compute gradient w.r.t. weights?

Backpropagation!
Backpropagation Learning

15-486/782: Artificial Neural Networks
David S. Touretzky

Fall 2006
LMS / Widrow-Hoff Rule

\[\Delta w_i = -\eta (y - d)x_i \]

Works fine for a single layer of trainable weights. What about multi-layer networks?
With Linear Units, Multiple Layers Don't Add Anything

\[\hat{y} = U \times (V \bar{x}) = \underbrace{(U \times V)}_{2 \times 4} \bar{x} \]

\[\bar{x} \]

\[\uparrow U: \quad 2 \times 3 \text{ matrix} \]

\[\uparrow V: \quad 3 \times 4 \text{ matrix} \]

Linear operators are closed under composition. Equivalent to a single layer of weights \(W = U \times V \)

But with non-linear units, extra layers add computational power.
What Can be Done with Non-Linear (e.g., Threshold) Units?

1 layer of trainable weights

separating hyperplane
2 layers of trainable weights

convex polygon region
3 layers of trainable weights

composition of polygons: non convex regions
How Do We Train A Multi-Layer Network?

Can't use perceptron training algorithm because we don't know the 'correct' outputs for hidden units.
How Do We Train A Multi-Layer Network?

Define sum-squared error:

\[E = \frac{1}{2} \sum_p (d^p - y^p)^2 \]

Use gradient descent error minimization:

\[\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}} \]

Works if the nonlinear transfer function is differentiable.
Deriving the LMS or “Delta” Rule As Gradient Descent Learning

\[y = \sum_i w_i x_i \]

\[E = \frac{1}{2} \sum_p (d^p - y^p)^2 \]

\[\frac{dE}{dy} = y - d \]

\[\frac{\partial E}{\partial w_i} = \frac{dE}{dy} \frac{\partial y}{\partial w_i} = (y - d)x_i \]

\[\Delta w_i = -\eta \frac{\partial E}{\partial w_i} = -\eta (y - d)x_i \]

How do we extend this to two layers?
Switch to Smooth **Nonlinear** Units

\[\text{net}_j = \sum_i w_{ij} y_i \]

\[y_j = g(\text{net}_j) \quad \text{**g must be differentiable**} \]

*Common choices for \(g \):

\[g(x) = \frac{1}{1+e^{-x}} \]

\[g'(x) = g(x) \cdot (1-g(x)) \]

\[g(x) = \tanh(x) \]

\[g'(x) = 1/\cosh^2(x) \]
Gradient Descent with Nonlinear Units

\[y = g(\text{net}) = \tanh \left(\sum_i w_i x_i \right) \]

\[\frac{dE}{dy} = (y-d), \quad \frac{dy}{d\text{net}} = 1/cosh^2(\text{net}), \quad \frac{\partial \text{net}}{\partial w_i} = x_i \]

\[\frac{\partial E}{\partial w_i} = \frac{dE}{dy} \cdot \frac{dy}{d\text{net}} \cdot \frac{\partial \text{net}}{\partial w_i} = \frac{(y-d)}{cosh^2 \left(\sum_i w_i x_i \right)} \cdot x_i \]
Now We Can Use The Chain Rule

\[
\frac{\partial E}{\partial y_k} = (y_k - d_k)
\]

\[
\delta_k = \frac{\partial E}{\partial net_k} = (y_k - d_k) \cdot g'(net_k)
\]

\[
\frac{\partial E}{\partial w_{jk}} = \frac{\partial E}{\partial net_k} \cdot \frac{\partial net_k}{\partial w_{jk}} = \delta_k \cdot y_j
\]

\[
\frac{\partial E}{\partial y_j} = \sum_k \left(\frac{\partial E}{\partial net_k} \cdot \frac{\partial net_k}{\partial y_j} \right)
\]

\[
\delta_j = \frac{\partial E}{\partial net_j} = \frac{\partial E}{\partial y_j} \cdot g'(net_j)
\]

\[
\frac{\partial E}{\partial w_{ij}} = \delta_j \cdot y_i
\]
Weight Updates

\[
\frac{\partial E}{\partial w_{jk}} = \frac{\partial E}{\partial \text{net}_k} \cdot \frac{\partial \text{net}_k}{\partial w_{jk}} = \delta_k \cdot y_j
\]

\[
\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial \text{net}_j} \cdot \frac{\partial \text{net}_j}{\partial w_{ij}} = \delta_j \cdot y_i
\]

\[
\Delta w_{jk} = -\eta \cdot \frac{\partial E}{\partial w_{jk}} \quad \Delta w_{ij} = -\eta \cdot \frac{\partial E}{\partial w_{ij}}
\]
Deep learning is everywhere

Classification

Retrieval

[Krizhevsky 2012]
Deep learning is everywhere

Detection

Segmentation

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

[Farabet et al., 2012]
Deep learning is everywhere

self-driving cars

NVIDIA Tegra X1
Deep learning is everywhere

[Toshev, Szegedy 2014]

[Mnih 2013]
Deep learning is everywhere

[Ciresan et al. 2013]

[Sermanet et al. 2011]

[Ciresan et al.]
Image Captioning

[Vinyals et al., 2015]
Remaining Pieces

- Optimizing machine learning objectives:
 - Stochastic Descent
 - Mini-batches

- Improving generalization
 - Drop-out

- Activation functions

- Initialization and batch normalization

- Computing the gradient $\nabla g(w)$
 - Backprop
 - Gradient checking
Mini-batches and Stochastic Gradient Descent

- Typical objective:
 \[
 ll(w) = \frac{1}{m} \sum_{i=1}^{m} \log p(y = y^{(i)} \mid f(x^{(i)}); w)
 \]
 = average log-likelihood of label given input

 \[
 \approx \frac{1}{k} \sum_{i=1}^{k} \log p(y = y^{(i)} \mid f(x^{(i)}); w)
 \]
 = estimate based on mini-batch 1...k

- Mini-batch gradient descent: compute gradient on mini-batch (+ cycle over mini-batches: 1..k, k+1...2k, ... ; make sure to randomize permutation of data!)
- Stochastic gradient descent: k = 1
Remaining Pieces

- Optimizing machine learning objectives:
 - Stochastic Descent
 - Mini-batches
- Improving generalization
 - Drop-out
- Activation functions

- Initialization and batch normalization
- Computing the gradient $\nabla g(w)$
 - Gradient checking
 - Backprop
Regularization: **Dropout**

“randomly set some neurons to zero in the forward pass”

[Srivastava et al., 2014]
Waaaait a second…
How could this possibly be a good idea?
Waaaait a second…
How could this possibly be a good idea?

Forces the network to have a redundant representation.
Waaaaait a second…
How could this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of models (that share parameters).

Each binary mask is one model, gets trained on only ~one datapoint.
At test time….

Ideally:
want to integrate out all the noise

Sampling-based approximation:
do many forward passes with different dropout masks, average all predictions
At test time….
Can in fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

Q: Suppose that with all inputs present at test time the output of this neuron is x.

What would its output be during training time, in expectation? (e.g. if $p = 0.5$)
At test time....
Can in fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

during test: \(a = w_0 x + w_1 y \)
during train:
\[
E[a] = \frac{1}{4} * (w_0 * 0 + w_1 * 0 \\
 + w_0 * 0 + w_1 * y \\
 + w_0 * x + w_1 * 0 \\
 + w_0 * x + w_1 * y) \\
= \frac{1}{4} * (2 w_0 * x + 2 w_1 * y) \\
= \frac{1}{2} * (w_0 * x + w_1 * y)
\]
At test time….
Can in fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

during test: \(a = w_0 \cdot x + w_1 \cdot y \)
during train:
\[
E[a] = \frac{1}{4} \cdot (w_0 \cdot 0 + w_1 \cdot 0 + w_0 \cdot 0 + w_1 \cdot y + w_0 \cdot x + w_1 \cdot 0 + w_0 \cdot x + w_1 \cdot y)
= \frac{1}{4} \cdot (2 \cdot w_0 \cdot x + 2 \cdot w_1 \cdot y)
= \frac{1}{2} \cdot (w_0 \cdot x + w_1 \cdot y)
\]

With \(p = 0.5 \), using all inputs in the forward pass would inflate the activations by 2x from what the network was “used to” during training!
=> Have to compensate by scaling the activations back down by \(\frac{1}{2} \)
Remaining Pieces

- Optimizing machine learning objectives:
 - Stochastic Descent
 - Mini-batches

- Improving generalization
 - Drop-out

- Activation functions

- Initialization and batch normalization

- Computing the gradient \(\nabla g(w) \)
 - Gradient checking
 - Backprop
Activation Functions

Sigmoid

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

\text{tanh} \quad \tanh(x)

\text{ReLU} \quad \max(0, x)

\text{Leaky ReLU} \quad \max(0.1x, x)

\text{Maxout} \quad \max(w_1^T x + b_1, w_2^T x + b_2)

\text{ELU} \quad
\begin{align*}
 f(x) &= \begin{cases}
 x & \text{if } x > 0 \\
 \alpha (\exp(x) - 1) & \text{if } x \leq 0
 \end{cases}
\end{align*}
Remaining Pieces

- Optimizing machine learning objectives:
 - Stochastic Descent
 - Mini-batches

- Improving generalization
 - Drop-out

- Activation functions

- Initialization and batch normalization

- Computing the gradient $\nabla g(w)$
 - Gradient checking
 - Backprop
Q: what happens when W=0 init is used?
- First idea: **Small random numbers**
 (gaussian with zero mean and $1e-2$ standard deviation)

\[W = 0.01 \times \text{np.random.randn}(D,H) \]
- First idea: **Small random numbers**
 (gaussian with zero mean and 1e-2 standard deviation)

 \[W = 0.01 \times \text{np.random.randn}(D,H) \]

 Works ~okay for small networks, but can lead to non-homogeneous distributions of activations across the layers of a network.
Let's look at some activation statistics.

E.g. 10-layer net with 500 neurons on each layer, using tanh non-linearities, and initializing as described in last slide.
All activations become zero!

Q: What do the gradients look like?
Almost all neurons completely saturated, either -1 and 1. Gradients will be all zero.

*1.0 instead of *0.01
“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation assumes linear activations)
but when using the ReLU nonlinearity it breaks.
He et al., 2015
(note additional /2)
\[
W = \text{np.random.randn(fan_in, fan_out)} / \text{np.sqrt(fan_in/2)} \quad \# \text{layer initialization}
\]

He et al., 2015
(note additional /2)
Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

...
Batch Normalization

“you want unit gaussian activations? just make them so.”

consider a batch of activations at some layer. To make each dimension unit gaussian, apply:

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

this is a vanilla differentiable function...

[Ioffe and Szegedy, 2015]
Batch Normalization

“you want unit gaussian activations? just make them so.”

1. compute the empirical mean and variance independently for each dimension.

\[
\hat{x}(k) = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}
\]

[Ioffe and Szegedy, 2015]
Batch Normalization

Usually inserted after Fully Connected / (or Convolutional, as we’ll see soon) layers, and before nonlinearity.

Problem: do we necessarily want a unit gaussian input to a tanh layer?

\[\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}} \]
Batch Normalization

Normalize:

\[
\hat{x}(k) = \frac{x(k) - E[x(k)]}{\sqrt{\text{Var}[x(k)]}}
\]

And then allow the network to squash the range if it wants to:

\[
y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}
\]

Note, the network can learn:

\[
\gamma^{(k)} = \sqrt{\text{Var}[x^{(k)}]}
\]
\[
\beta^{(k)} = E[x^{(k)}]
\]

to recover the identity mapping.

[Ioffe and Szegedy, 2015]
Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1 \ldots x_m\}$; Parameters to be learned: γ, β

Output: $\{y_i = \text{BN}_{\gamma, \beta}(x_i)\}$

- $\mu_\mathcal{B} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean
- $\sigma^2_\mathcal{B} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_\mathcal{B})^2$ // mini-batch variance
- $\tilde{x}_i \leftarrow \frac{x_i - \mu_\mathcal{B}}{\sqrt{\sigma^2_\mathcal{B} + \epsilon}}$ // normalize
- $y_i \leftarrow \gamma \tilde{x}_i + \beta \equiv \text{BN}_{\gamma, \beta}(x_i)$ // scale and shift

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization in a funny way, and slightly reduces the need for dropout, maybe

[Ioffe and Szegedy, 2015]
Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1...m\}$; Parameters to be learned: γ, β

Output: $\{y_i = \text{BN}_{\gamma,\beta}(x_i)\}$

$$
\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad // \text{mini-batch mean}
$$

$$
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2 \quad // \text{mini-batch variance}
$$

$$
\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \quad // \text{normalize}
$$

$$
y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) \quad // \text{scale and shift}
$$

Note: at test time BatchNorm layer functions differently:

The mean/std are not computed based on the batch. Instead, a single fixed empirical mean of activations during training is used. (e.g. can be estimated during training with running averages)
Remaining Pieces

- Optimizing machine learning objectives:
 - Stochastic Descent
 - Mini-batches
- Improving generalization
 - Drop-out
- Activation functions

- Initialization and batch normalization

- Computing the gradient \(\nabla g(w) \)
 - Gradient checking
 - Backprop
Gradient Descent

\[
\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient
Computational Graph

\[f = WX \]

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]
Convolutional Network (AlexNet)

input image
weights

loss
Neural Turing Machine

input tape

loss
Neural Turing Machine
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, \ y = 5, \ z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \ \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \ \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}, \ \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

E.g. \(x = -2, \ y = 5, \ z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \ \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \ \frac{\partial f}{\partial z} = q \]

Want: \[\frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}, \ \frac{\partial f}{\partial z} \]
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[
\begin{align*}
q &= x + y \\
\frac{\partial q}{\partial x} &= 1, \quad \frac{\partial q}{\partial y} &= 1
\end{align*}
\]

\[
\begin{align*}
f &= qz \\
\frac{\partial f}{\partial q} &= z, \quad \frac{\partial f}{\partial z} &= q
\end{align*}
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

E.g. \(x = -2, \ y = 5, \ z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}, \ \frac{\partial f}{\partial z} \)
\(f(x, y, z) = (x + y)z \)

e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
$$f(x, y, z) = (x + y)z$$

e.g. \(x = -2, y = 5, z = -4\)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)

Chain rule:
\[\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y} \]
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[
\begin{aligned}
q &= x + y \\
\frac{\partial q}{\partial x} &= 1, \\
\frac{\partial q}{\partial y} &= 1
\end{aligned}
\]

\[
\begin{aligned}
f &= qz \\
\frac{\partial f}{\partial q} &= z, \\
\frac{\partial f}{\partial z} &= q
\end{aligned}
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\(f(x, y, z) = (x + y)z \)

e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)

Chain rule:

\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} \]
activations

\[x \rightarrow f \rightarrow z \]
activations

\[
\frac{\partial z}{\partial x}
\]

\[
\frac{\partial z}{\partial y}
\]

"local gradient"
Activations:

\[x \]

Gradients:

\[\frac{\partial L}{\partial z} \]

\[\frac{\partial z}{\partial x} \]

\[\frac{\partial z}{\partial y} \]

"Local gradient"
activations

\[\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x} \]

"local gradient"

\[\frac{\partial L}{\partial y} \]

\[\frac{\partial L}{\partial z} \]

gradients
activations

\[
\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}
\]

"local gradient"

\[
\frac{\partial z}{\partial x}
\]

\[
\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y}
\]

\[
\frac{\partial L}{\partial z}
\]

gradients
activations

\[
\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}
\]

\[
\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y}
\]

"local gradient"
Another example:

\[
 f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}
\]

Diagram:

- w0: 2.00
- x0: -1.00
- w1: -3.00
- x1: -2.00
- w2: -3.00

Intermediates:
- w0 x0: -2.00
- w1 x1: 6.00
- 4.00

Next steps:
- 1.00
- -1.00
- 0.37
- 1.37
- 0.73
Another example:

$$f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x$$

$$f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a$$

$$f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1$$
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x \]

\[f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a \]

\[f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1 \]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[f(x) = e^x \]
\[f'_x(x) = e^x \]

\[f_a(x) = ax \]
\[f'_a(x) = a \]

\[f_c(x) = c + x \]
\[f'_c(x) = 1 \]

\[(-\frac{1}{1.37^2})(1.00) = -0.53 \]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x \]

\[f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a \]

\[f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1 \]

\[f(x) = \frac{1}{x} \quad \rightarrow \quad \frac{df}{dx} = -1/x^2 \]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[(1)(-0.53) = -0.53 \]

\[
\begin{align*}
f(x) &= e^x \\
f_a(x) &= ax \\
f_c(x) &= c + x
\end{align*}
\]

\[
\begin{align*}
\frac{df}{dx} &= e^x \\
\frac{df}{dx} &= a \\
\frac{df}{dx} &= 1
\end{align*}
\]

\[
\begin{align*}
\frac{df}{dx} &= -1/x^2 \\
\frac{df}{dx} &= 1
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
 f(x) &= e^x & \rightarrow & \frac{df}{dx} = e^x \\
 f_a(x) &= ax & \rightarrow & \frac{df}{dx} = a \\
 f_c(x) &= c + x & \rightarrow & \frac{df}{dx} = 1
\end{align*}
\]
Another example:

\[
f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}
\]

\[
(e^{-1})(-0.53) = -0.20
\]

\[
f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x
\]

\[
f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a
\]

\[
f(x) = \frac{1}{x} \quad \rightarrow \quad \frac{df}{dx} = -\frac{1}{x^2}
\]

\[
f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1
\]
Another example:

\[
f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}
\]

\[
f(x) = e^x \quad \Rightarrow \quad \frac{df}{dx} = e^x
\]

\[
f_a(x) = ax \quad \Rightarrow \quad \frac{df}{dx} = a
\]

\[
f_c(x) = c + x \quad \Rightarrow \quad \frac{df}{dx} = 1
\]

\[
f(x) = \frac{1}{x} \quad \Rightarrow \quad \frac{df}{dx} = -\frac{1}{x^2}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{- (w_0 x_0 + w_1 x_1 + w_2)}} \]

\[(-1) \times (-0.20) = 0.20 \]

\[
\begin{align*}
 f(x) &= e^x \\
 f_a(x) &= ax \\
 f_c(x) &= c + x \\
\end{align*}
\]

\[
\begin{align*}
 \frac{df}{dx} &= e^x \\
 \frac{df}{dx} &= a \\
 \frac{df}{dx} &= -1/x^2 \\
\end{align*}
\]
Another example:

\[
f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}
\]

\[
f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x
\]

\[
f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a
\]

\[
f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1
\]

\[
f(x) = \frac{1}{x} \quad \rightarrow \quad \frac{df}{dx} = -\frac{1}{x^2}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[\text{[local gradient]} \times \text{[its gradient]} \]
\[[1] \times [0.2] = 0.2 \]
\[[1] \times [0.2] = 0.2 \text{ (both inputs!)} \]

\[f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x \]
\[f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a \]
\[f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1 \]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
 f(x) &= e^x \\
 f_a(x) &= ax
\end{align*}
\]

\[
\begin{align*}
 \frac{df}{dx} &= e^x \\
 \frac{df}{dx} &= a
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \]

[local gradient] \times [its gradient]

\[
x_0: [2] \times [0.2] = 0.4
\]

\[
w_0: [-1] \times [0.2] = -0.2
\]

\[
f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x
\]

\[
f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a
\]

\[
f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1
\]

\[
f(x) = \frac{1}{x} \quad \rightarrow \quad \frac{df}{dx} = -\frac{1}{x^2}
\]
The sigmoid function is defined as:

\[
f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}
\]

The derivative of the sigmoid function is:

\[
\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}}\right) \left(\frac{1}{1 + e^{-x}}\right) = (1 - \sigma(x)) \sigma(x)
\]
\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

\[
\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}} \right) \left(\frac{1}{1 + e^{-x}} \right) = (1 - \sigma(x)) \sigma(x)
\]

162

sigmoid function

sigmoid gate

(0.73) * (1 - 0.73) = 0.2
Patterns in backward flow

add gate: gradient distributor
max gate: gradient router
mul gate: gradient…?
Gradients add at branches
Implementation: forward/backward API

Graph (or Net) object. *(Rough psuedo code)*

```python
class ComputationalGraph(object):
    # ...
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes_topologically_sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss

    def backward():
        for gate in reversed(self.graph.nodes_topologically_sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs_gradients
```
Implementation: forward/backward API

class MultiplyGate(object):

```python
def forward(x, y):
    z = x * y
    return z

def backward(dz):
    # dx = ... #todo
    # dy = ... #todo
    return [dx, dy]
```

(x, y, z are scalars)
Implementation: forward/backward API

```
class MultiplyGate(object):
    def forward(x, y):
        z = x * y
        self.x = x  # must keep these around!
        self.y = y
        return z

    def backward(dz):
        dx = self.y * dz  # [dz/dx * dL/dz]
        dy = self.x * dz  # [dz/dy * dL/dz]
        return [dx, dy]
```

(x, y, z are scalars)
Deep Learning Frameworks

TensorFlow (in your Project 6!)
Theano
Torch
CAFFE
Computation Graph Toolkit (CGT)